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Abstract 

In this appendix we present several pieces of supplementary analysis to support our work in 

the main text, including: (i) evidence that the CDS network has a core-periphery structure that 

is stable through time; and (ii) proof that the relationship between bilateral price concessions 

and concentration identifies the sign of in our model. We also provide additional details on 

how we construct the key variables used in our empirical analysis and develop further intuition 

for the baseline model. Finally, we explore the implications of di↵erent specifications for the 

preference to smooth out trades and develop several extensions of our baseline model (e.g., 

heterogenous beliefs about default risk). 
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I.1 Supplementary Analysis 

In this section, we supplement our work in the main text with the following analyses: (i) evidence 

that the CDS network has a stable, core-periphery structure; (ii) a proof that the regression of 

bilateral price concessions on concentration  is a sharp test of whether > 0 in  the model,  

regardless of the shape of the network; (iii) robutness checks on the algorithm we use to define 

dealers; (iv) details on how we measure bilateral and net CDS exposures; and (v) robustness of the 

stress tests from the main text (e.g., customer removal). 

I.1.1 The Persistence and Shape of the CDS Trading Network 

I.1.1.1 How Does the CDS Network Change Over Time? 

In the model of OTC markets in Section 2, we assumed that the trading network was static, which 

in turn means that we can treat it as exogenous when characterizing the model’s equilibrium. We 

now argue that this simplifying assumption is a reasonable one, at least in the context of CDS 

trading. 

Continuing with our notation from the model, we empirically represent trading relationships in 

the CDS market in at date t through the matrix Gt, where  t is measured at a weekly frequency. 

Specifically, we code element Gi,j,t as a one if counterparties i and j have an open position with 

each other at the end of week t and we code it as zero otherwise. As a simple way to study 

network dynamics, we then compute the likelihood of new connections being established or current 

connections being broken. Formally, we first compute the number of counterparty-pairs that are 

or are not connected at t: 

n nX X 
lNt = 1 (gi,j,t = l) , l = 0, 1 

i=1 j=i+1 

where n is the total number of counterparties in the market.1 1 (gi,j,t = l) is an indicator variable 

based on connection status. Next, conditional on connection status at t, we count the number of 

connected and unconnected counterparties at time t+ 1: 

n nX X 
N l,m = 1 (g = l and g = m) , l,m = 0, 1t+1 i,j,t i,j,t+1 

i=1 j=i+1 

0,0So, for instance, Nt+1 counts the number of counterparties who are not connected at time t and 

remain unconnected at time t + 1. We then map these counts to fractions of new and broken 

connections as follows: 

l,m Nl,m t+1 p = , l,m = 0, 1t+1 Nt
l 

1We define n as the total number of counterparties in our sample. For counterparties that enter at di↵erent points 
in the sample, we set all of their corresponding elements in the G matrix to zero prior to their entry. 
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0,0Extending the previous example, pt+1 is the fraction of counterparties who were not connected at 

time t and remain unconnected at time t + 1. Finally, we compute these connection transition 

probabilities for each period and then average over all periods. 

Panel A of Table I.1 shows the outcome of this exercise. Over our sample, conditional on no 

connection in week t, two counterparties have a 0.01% chance of making a new connection in the 

following week. Similarly, if two counterparties are connected in the current week, the probability 

that they remain connected next week is 99.09%. These statistics indicate that the CDS trading 

network is incredibly persistent – new connections in the CDS market are rarely formed and existing 

connections are rarely broken. 

Panel B of Table I.1 provides an alternative way of quantifying the persistence of the CDS 

network. For each counterparty i and date t, we compute two standard measures of i’s centrality 
din the network: degree centrality and eigenvector centrality. Degree centrality ci,t simply counts 

the number of counterparties with whom i’s trades: 

X 
d ci,t = gi,j,t 

j 6=i 

eEigenvector centrality c is defined recursively, based on the centrality of i’s trading partners: i,t 

X 
e 1 e ci,t = gi,j,t ⇥ cj,t 

j 6=i 

Intuitively, counterparty i has a large eigenvector centrality if it is connected to other connected 

counterparties.2 

Next, at each date t, we compute the cross-sectional percentiles of each centrality measure. For 

instance, we compute the 10th percentile of degree centrality for each date in our sample. We then 

fit an AR(1) process to the time-series of 10th percentile of degree centrality. The estimated AR(1) 

statistics measure the stability of the centrality distribution through time. The results in Panel B 

of Table I.1 indicate that a counterparty’s position in the CDS network is generally persistent, at 

least as measured by degree or eigenvector centrality. In short, the least central counterparties in 

the network stay that way, as do the most central counterparties. 

It is important to note that we have likely overstated the extent to which the CDS network 

changes during our sample. To see why, recall that our construction of Gt means that i and j 

will appear to have broken their connection if their existing positions mature without replacement, 

despite the fact that i and j are still likely to have the infrastructure (e.g., ISDA agreements) to 

trade at time s > t. In this sense, our analysis of how often connections are broken and formed 

is probably somewhat overstated. Despite this bias, we still find that the structure of the CDS 

network is highly persistent, thereby supporting our treatment of it as exogenous in the model. 

2Formally, it is the (n ⇥ 1) vector c et that solves the system Gtc et = c et , where is the largest eigenvalue of Gt. 
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I.1.1.2 The Shape of the CDS Network 

It is well-established that many OTC trading networks are characterized by a core-periphery struc-

ture in which a central set of dealers trades with a periphery set of customers (e.g., Li and Schürho↵ 

(2018), Peltonen, Scheicher, and Vuillemey (2014), or Hollifield, Neklyudov, and Spatt (2017)). We 

now confirm that this is the case in the U.S. CDS market as well. To simplify the analysis, we 

use the entire sample to define a constant network matrix G. Specifically, we set Gi,j equal to 

one if counterparties i and j have any outstanding CDS positions open with each other over our 

sample. This simplification is motivated by our preceding results showing that the CDS network 

is relatively static, meaning Gt ⇡ G. 

Figure I.1 presents a graphical depiction of the empirical G matrix of counterparty connections 

in the CDS market. Replacing ones with black squares and zeros with white space, it is clear that the 

network in the data is closely approximated by a core-periphery network. The black square in the 

upper left represents the full connections within the core. The remaining black bars across the top 

and left represent the core’s connections to periphery agents. The white area with a diagonal black 

line through it highlights the fact that direct connections between periphery agents are extremely 

rare. These broad patterns confirm that, like many other OTC markets, the CDS market is core-

periphery. We will take advantage of the core-periphery structure in Section 2.4 when we calibrate 

the model using observed prices and net exposures of dealers. The calibration also requires us to 

designate which of the members of the network are dealers and which are customers. In Appendix 

C, we provide details on a minimum-distance algorithm that we use for dealer classification. This 

algorithm generates a counterparty network with 14 dealers, though the figure is already highly 

suggestive of who is and who is not a dealer.3 

I.1.2 Testing > 0 inside of the model 

In this subsection, we show that, within the model framework, the coe cient from the price con-

cession is negative if, and only if, > 0. In the model, price concession and  between agents i 

and j are defined as: 

8 
<Rmax 

i Rij if ij > 0 
PriceConcessionij = , (I.1) : RminRij i if ij < 0 

| ij |
ij = Pn , (I.2) 

s=1 | is| 

where Rmax = maxs Ris and Rmin = mins We will restrict our analysis to parameterization in i i Ris. Pnwhich ij is well defined, that is is| > 0 for every i. s=1 | 
3DTCC also classifies traders based on its list of registered dealer members. In single-name transaction data, 

DTCC’s set of dealers is responsible for nearly 86 percent of gross volume. The 14 counterparties who we label as 
a dealer are responsible for about 83 percent. Throughout the paper and internet appendix, We provide robustness 
checks for our main results to DTCC dealer designation. 
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For ij > 0, that is, agent i sells protection to agent j, we can write the first-order condition as 

follows: 

Rij µ = ↵� 2 (wi + zi) +  ij 

Rij µ = ↵� 2 (wi + zi) +  | ij | 

Rij = µ ↵� 2 (wi + zi) | ij | . 

By adding Rmax on both sides, we have: i 

Rmax = Rmax 
i Rij i µ ↵� 2 (wi + zi) | ij | 

n 

Rmax = Rmax 
X | ij | 

i Rij i µ ↵� 2 (wi + zi) | is| Pn 
is|s=1 s=1 | 

Rmax s = a bs (I.3) i Rij i i ij , 

P s = Rmax nwhere ai i µ ↵� 2 (wi + zi) and bsi = s=1 | is| 0. 

For ij < 0, that is, agent i buys protection to agent j, we can write the first-order condition 

as follows: 

Rij µ = ↵� 2 (wi + zi) +  ij 

Rij = µ+ ↵� 2 (wi + zi) | ij | . 

By subtracting Rmin on both sides, we have: i 

Rmin RminRij i = i + µ+ ↵� 2 (wi + zi) | ij | 
nX 

Rmin Rmin | ij |
Rij i = i + µ+ ↵� 2 (wi + zi) | is| P n 

is|s=1 s=1 | 

Rmax b 
i Rij = ai bi

bij , (I.4) 

Pb Rmin nwhere ai = i + µ+ ↵� 2 (wi + zi) and bbi = s=1 | is|. 
Notice that bsi = bbi . Let 

nX 
bi = bs = bb = | is| . (I.5) i i 

s=1 

Also bi > 0 whenever there trade in equilibrium and > 0. We can write price concession as 

follows: 
8 
<asi biij if ij > 0 

PriceConcessionij = , (I.6) :abi biij if ij < 0 

7 
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Next, we derive the coe cient of regressing PriceConcessionij on ij with a fixed e↵ect on 

agent i by whether agent i is seller or buyer of protection from agent j, that is, the coe cient on 

the following specification: 

PriceConcessionij = b/s + �ij + errorij , (I.7) i 

where b/s represents the fixed e↵ects and b/s 2 {s, b, } specifies whether agent i sells of buy i 

protection from agent j. 

Let {P1,P2,P3, . . . ,P2n} be the partition of all (ij) pairs into fixed e↵ects buckets. Formally, we 

define these set as follows. For i = 1, . . . , n, Pi = {(s, j) 2 N2 : s = i& ij > 0}, which means that 

Pi is the group of pairs (s, j) such that s is fixed equal to i, and s sells protection to j. Analogously, 

for i = n+ 1, . . . , 2n, Pi = {(s, j) 2 N2 : s = i n& ij < 0}, which means that Pi is the group of 

pairs (s, j) such that s is fixed equal to i n, and s buys protection from j. 

To formally derive the regression coe cient, we start from Equation (I.6) and then demean 

within each fixed e↵ect buckets: 

PriceConcessionij = ab/s biiji 

PriceConcessionij PriceConcessionij = bi (ij ij ) (I.8) 

where b/s 2 {s, b, }, PriceConcessionij is the average price concession within the group the pair 

(i, j) belongs to, and ij is the average ij within the group the pair (i, j) belongs to. Therefore, 

the model-equivalent regression coe cient from Equation (I.7) is given by: 

dCov PriceConcessionij PriceConcessionij ,ij ijˆmodel = (I.9) dVar (ij ij ) 

Notice that the sign of the ˆmodel estimated is the same sign as the covariance term in denominator 

of the expression above. 

We can write the covariance term as follows: 

dCov PriceConcessionij PriceConcessionij ,ij ij 

using definition of covaraince: 

X1 
= PriceConcessionij PriceConcessionij (ij ij )[2n# l=1

Pl 
(ij)2[2n Pss=1 

X1 
PriceConcessionij PriceConcessionij[2n# l=1

Pl 
(ij)2[2n Pss=1 

X1 
(ij ij )[2n# l=1

Pl 
(ij)2[2n 

s=1Ps 
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applying law of iterated expectations: 

2nX X#(Ps) 1 
= PriceConcessionij PriceConcessionij (ij ij )

# [2n #(Ps)s=1 l=1
Pl 

(ij)2Ps 

2nX X#(Ps) 1 
PriceConcessionij PriceConcessionij

# [2n #(Ps)s=1 l=1
Pl 

(ij)2Ps| {z }
=0 

2nX X#(Ps) 1 
(ij ij )

# [2n #(Ps)s=1 l=1
Pl 

(ij)2Ps| {z }
=0 

2nX X#(Ps) 1 
= PriceConcessionij PriceConcessionij (ij ij )

# [2n #(Ps)s=1 l=1
Pl 

(ij)2Ps 

using Equation (I.8): 

2nX X#(Ps) 1 2 = bi (ij ij )[2n #(Ps)# l=1
Pls=1 (ij)2Ps 

using Equation (I.5): 

2n nX X X#(Ps) 1 2 = (ij ij ) | ik|
# [2n #(Ps)s=1 l=1

Pl 
(ij)2Ps k=1 

| {z } 
>0 

> 0 if, and only if, ˆmodel < 0.Therefore, under the assumptions of the model, we have that: 

I.1.3 Robustness of Dealer Selection Algorithm 

To verify the robustness and consistency of our dealer selection algorithm from Appendix C, we  

perform the following exercise. We start with a full network matrix that includes all the exist-

ing counterparties, and compute who is a dealer based on the algorithm. In a second step, we 

sort all counterparties based on degree and then transaction volume. We then iteratively remove 

one counterparty at a time, based on the previous degree-volume sort. Every time we remove a 

counterparty, we rerun the algorithm for the remaining counterparties. In Figure I.2, we plot the 

number of dealers implied by our selection algorithm against the number of remaining agents in this 

interactive procedure. The main takeaway from this analysis is that the same 14 dealers survive 

this strict selection procedure for every network with more than 200 counterparties. 

9 
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I.1.4 The Net Position of Dealers 

In this section, we provide additional details and robustness checks on how we construct our measure 

of bilateral exposure between counterparties i and j. This metric is developed in Section 3.2.1 of 

the main text. 

I.1.4.1 Estimating Betas 

To keep this appendix self-contained, we repeat some details of our methodology that are presented 

in the main text. To start, we compute the exposure of an arbitrary CDS position p to our aggregate 

credit risk factor. On date t, suppose that the position is written on firm f and has m remaining 

years till maturity. We first assign each position to a “maturity bucket” b based on its maturity m 

as follows: 

b = 

8 
>>>>>>< 

>>>>>>: 

1 if  m 2 [0, 2) 

3 if  m 2 [2, 4) 

5 if  m 2 [4, 6) 

7 if  m 6) 

Then for each position p, we match it to the Markit CDS spread database based on the underlying 

firm f and maturity bucket b. Markit provides constant maturity CDS spreads for maturities 

ranging from 6 months all the way to 10 years. We match each position’s maturity bucket b to 

the closest constant maturity spread in Markit. For instance, if we observe a position on Ford 

Motor Co. that has a maturity bucket b = 3, we obtain Ford’s history of three-year CDS spreads 

up to date t from Markit. In addition, we match position p to Markit based on a number of 

other characteristics. These characteristics include Markit RED id (i.e. the underlying the firm), 

currency, capital structure tier, and documentation clause relating to the CDS default trigger. For 

instance, holding all other characteristics equal, Ford CDS quoted in USD and EUR would be 

matched to two di↵erent records in Markit. Similarly, Ford CDS on senior and junior debt, holding 

all other characteristics equal, would be matched to two di↵erent records in Markit. 

Next, we compute the position’s underlying beta with respect to changes in our aggregate credit 

risk factor via the following rolling regression: 

#CDSf,b,s = ↵ + p,t ⇥ #CDS Indexs + " f,b,s, s  2 [t 2 years, t] 

where CDS Indexs is our aggregate credit risk factor on date s, as defined in Section 3.3.1 in the 

main text. The regression is run using weekly data over a rolling window of two years. The 

position’s beta p,t gives us a gauge of how sensitive the underlying CDS spread of the position is 

to movements in this index. 

We compute p,t for every position contained in our database sourced from DTCC. Importantly, 

we account for both index and single name CDS positions. Selling protection on an index is 

equivalent to selling protection on the individual firms that comprise the index. This distinction is 

10 
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particularly important in the CDS market because index positions are nearly half of the net notional 

outstanding for the entire CDS market during our sample (Siriwardane (2018)). To account for this 

fact, we follow Siriwardane (2018) and disaggregate CDS indices into their individual constituents 

and then combine these “disaggregated” positions with any pure single name positions. We then 

estimate p,t for every position and date in this disaggregated data. 

I.1.4.2 Aggregation 

Armed with ’s for each position p, we then aggregate between two counterparties as follows: 

Ep,t ⌘ p,t ⇥ Notionalp,t X X 
Neti,j,t ⌘ Ep,t Ep,t 

p2Si,j,t p2Bi,j,t X X 
Grossi,j,t ⌘ Ep,t + Ep,t (I.10) 

p2Si,j,t p2Bi,j,t 

where Si,j,t as the set of positions where i is a seller to j, and Bi,j,t as the set of positions where i 

is a buyer from j, both as of time t. Because these measures of bilateral exposure are weighted by 

p,t, they provide a measure of net and gross bilateral exposure to our aggregate credit risk factor. 

And, by construction, positive values of Neti,j,t mean that i is a net seller of CDS protection on 

aggregate credit risk to j. 

To determine a given counterparty i’s overall net exposure to aggregate credit risk, we can 

simply sum their net positions across all counterparties: 

X 
Neti,t ⌘ Neti,j,t 

j 

Our main measure of dealer exposure from Section 3.3.1 of the main text scales each dealer’s 

net notional exposure by its market capitalization: 

Neti,t 
zi,t ⌘ 

MktCapi,t 

Finally, the net exposure of the entire dealer sector, denoted z̄  d,t, is simply the average zi,t 
across dealers. 

I.1.4.3 Alternative Measure of Credit Risk Exposure 

We now turn to an alternative way of computing zi,t for each dealer i and date t. As with our 

preferred measure of zi,t, we start with the ’s of each position (see Appendix I.1.4.1). After 

matching all DTCC positions to a , we then compute each position’s “DV01”. Analogous to an 

option delta, DV01 is the standard way that industry professionals quantify the dollar change of a 

position with respect to a move in the position’s underlying credit spread. For example, suppose 
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that a fictitious position on Xerox Corp. has a notional value of $1. The DV01 tells how many 

dollars the seller in the swap would gain/lose if Xerox’s credit spread falls by 1 basis point.4 

We then use DV 01f to denote position p’s DV01 as of date t. The  superscript  f denotes that p,t 

this DV01 is computed for a one basis point move in firm f ’s CDS spread. See Appendix I.1.4.4 

for details on how we compute DV 01f In all cases, we define DV 01fp from the perspective of the p,t. 

protection seller, meaning that it is always positive for sellers and is negative for buyers (e.g. a 

decrease in CDS spreads always helps the seller). 

Once we compute DV 01f 
p,t, it is easy to ask how much the seller would lose if there is a one-basis 

point fall in the aggregate credit risk factor: 

DV 01Agg = DV 01f ⇥p,t p,t p,t 

DV 01Agg 
p,t is useful because we can sum it across positions – its units are dollars per one basis 

point fall in the aggregate credit risk factor. Once we compute DV 01Agg for all positions, we p,t 

DV 01Agg aggregate it bilaterally between counterparties i and j by setting Ep,t = in Equation p,t 

(I.10). Computing net and gross exposures at the individual counterparty level and dealer sector 

then proceed as before. The gross exposure measure using DV01s in Equation (I.10) is  further  used  

as an input to computing bilateral concentration i,j,t in Section 3.3.2 in the main text. 

Average Dealer Exposure Table I.2 presents some simple time-series averages of z̄  d for each 

of our construction methodologies. The biggest observation from the table is that all of the z̄  d are 

positive on average. Thus, regardless of how we measure exposure, dealers are on average sellers 

of credit protection during our sample. The DV01-based metric indicates that a 100 basis point 

increase in aggregate credit risk would cause the average dealer to lose 0.22 percent of their equity 

value.5 Again, the larger point here is that dealers are exposed to the underlying credit risk of the 

economy during our sample. This basic fact is important in how we infer the structural parameters 

of our model based on the prices paid by dealers versus customers. 

I.1.4.4 Computing Credit Sensitivities (DV01) 

We define a position’s credit portfolio sensitivity, DV 01fp , as the sensitivity of the position to a 

change in the underlying reference entity’s credit spread. We arrive at this measure by applying 

the ISDA Standard Model for pricing credit derivative contracts (CDS) and the implementation 

detailed in the Appendix of Paddrik, Rajan, and Young (2020). A CDS position p written on firm f 

can be expressed as the di↵erence between premium leg Premsf and pay leg Paysf , calibrated from 

market spread sf (baseline). From the perspective of the seller, Premsf is the discounted present 

value of the buyer’s incoming payments, while Paysf is the present value of outgoing payouts 

4Following with industry standard, we consider a one basis point decrease in the entire term structure of Xerox’s 
CDS spread. 

5In the table, we have scaled the DV01-based measure so that it corresponds to a 100 basis point move in the 
index. 
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contingent on default of f . Both components are functions of the underlying (risk-neutral) default 

risk of the firm, which is inferred from prevailing credit spreads sf . (We suppress in our notation 

other characteristics which uniquely identify the market spread such as term, documentation clause, 

currency, and date of observation.) The position can be revalued under a di↵erential shock to market 

spreads, s0 = sf + dsf (shock). Following industry practice, we adopt 1 basis point change. This f 

permits us to express the DV 01fp from the protection seller’s perspective as 

f fDV 01fp = (Prems0 Premsf ) (Pays
0 

Paysf ) · Np 

The DV 01 expresses the di↵erence between the baseline and a scenario in which credit spreads 

(e.g. default risk) rise. By this definition, it is therefore always negative from the perspective of 

the seller. 

We rely on multiple data sources to identify contractual inputs for pricing positions. We use the 

underlying’s reference entity’s term structure of credit spreads, contract currency, floating risk-free 

rates, and capital structure of the CDS’ underlying reference obligation. We source credit spreads 

from Markit, contract currency from DTCC, the term structure of risk-free rates for contract 

currencies from Haver Analytics, and reference entity capital structure from bond information 

provided by Bloomberg. 

I.1.5 Customer Removal 

We can also use the calibrated model from Section 3.4 to study the e↵ects of a customer’s removal. 

Table I.3 reports the e↵ects of removing a customer as large as the largest-net-seller dealer. We 

conduct two distinct customer removal exercises. First, we remove a customer endowed with the 

same amount of pre-trade exposure as the largest-net-seller dealer. The e↵ects of such removal are 

negligible and dealer market average spread barely changes, as reported in Column (2). According 

to Equation (14) in the main text, customer failure a↵ects dealer average spread (Rd ) by changing 

the average pre-trade exposure in the economy (!). Hence, the removal of a customer has limited 

impact on the dealer average spread as it almost does not change !. A customer and a dealer 

endowed with the same pre-trade exposure are likely to hold di↵erent net positions in the CDS 

market because customers face fewer counterparties, which limits their risk-sharing ability. 

In the second exercise, we remove a customer that holds a net selling position as large as the 

largest-net-seller dealer. To infer the customer’s pre-trade exposure, we use Equation (A7) from the 

model’s derivation detailed in the appendix. This implies a customer with an even lower pre-trade 

exposure to aggregate default. The removal of such customer has larger impact on equilibrium 

spreads as reported in Column (3), although it is significantly lower than the failure of a dealer 

providing the same amount of insurance to the economy. The average dealer market spread increases 

by less than 10 basis points, from 141 to 150.85 basis points. 
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I.1.6 Dealer Removal Robustness: ! assumption, DTCC Dealers 

For robustness, we confirm that our results do not rely on normalizing ! to one. In Table I.4, we  

report the same set of results assuming ! = 0.5 and ! = 3 and our conclusions are the same. In 

Table I.5, we repeat the calibration and dealer removal exercise using DTCC’s definition of dealers. 

We still find a large, yet lower, impact on credit spreads when a dealer fails. The e↵ect is lower 

because there are more dealers under the DTCC’s definition versus ours (26 vs. 14), so risk is more 

easily reallocated when a dealer fails. 

I.2 Intuition for Baseline Model 

In this section, we consider an example with three agents in order to provide intuition and to 

highlight key features of the model in Section 2. In Section I.2.2, we extend the three-agent model 

to have five agents, which lets us build intuition for the equilbrium when the network is core-

periphery. Finally, we use the calibration from Section 3.4 to provide a sharper characterization of 

. 

I.2.1 Three-agent example 

We use an example with three agents to highlight three pieces of intuition that extend to the 

more general version of our baseline model. First, the three-agent model generates price dispersion 

and intermediation in equilibrium. Second, it generates what appears like bid-ask spreads with 

asymmetric prices. Lastly, the example can generate a counterintuitive trading pattern, in which 

an agent with higher pre-trade exposure sells protection to someone with lower pre-trade exposure 

to the underlying asset. The derivations of the three-agent example are in Appendix I.2.1.2. 

I.2.1.1 Key Results 

Start with the assumption that there are three agents in the economy. Agents 1 and 2 can trade 

with each other, and agents 1 and 3 can also trade with one another. However, agents 2 and 3 

cannot trade with each other. Hence, agent 1 in this example acts like a central dealer to agents 2 

and 3. Formally, the trading network is given by: 

32 
1 1 1  

G = 64 1 1 0  
75 . (I.11) 

1 0 1  

In this economy, agents 1, 2, and 3 have pre-trade exposures given by !1, !2, and !3, respectively.  

To keep the example more tractable, we set !1 = 0. In equilibrium, based on Equation (8), agent 

1’s net position is: 

2↵� 
= (!2 + !3) . (I.12) z1 

3↵� 2 + 2  
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Agent 1’s net position, z1, is a combination of the pre-trade exposures of agents 2 and 3. If agents 

2 and 3 have pre-trade exposures greater than agent 1, i.e. !2 + !3 > 0, then agent 1 endogenously 

becomes a net seller of insurance with z1 > 0 in  equilibrium.  

Using Equation (8) and agent 1’s net position, agents 2 and 3 net positions are given by: 

✓ ◆✓ ◆ ✓ ◆� 
↵� 2 ↵� 2 2↵� 2 + 2  

z2 = !3 !2 ,
↵� 2 + 2  3↵� 2 + 2  ↵� 2 

and 

✓ ◆✓ ◆ ✓ ◆� 
↵� 2 ↵� 2 2↵� 2 + 2  

z3 = !2 !3 . 
↵� 2 + 2  3↵� 2 + 2  ↵� 2 

Next, we highlight the three aforementioned features of this example. First, notice that if !3 > 0 

and !2 = !3, then  z1 = 0 in equilibrium from Equation (I.12). Also, in equilibrium, we would 

have z2 > 0 and z3 < 0. This example generates intermediation in equilibrium as agent 1 buys 

insurance from agent 2 and sells it to agent 3. 

Second, this example generates what appears like bid-ask spreads. To see why, notice that the 

di↵erence between the price at which agent 1 sells to agent 2 and the price at which agent 1 buys 

from agent 3 is positive and given by: 

✓ ◆
2↵� 

R13 R12 = (!3 !2) . 
↵� 2 + 2  

If !3 > !2, then such price di↵erence is positive, i.e., R13 R12 > 0. 

Furthermore, prices are tilted towards larger pre-trade exposures, generating asymmetric bid-

ask spreads. To show such asymmetry is generated, let R11 be the equilibrium price for agent 1 if 
2it would trade with itself. Specifically, let R11 µ = ↵� 2(z1 + !1) =  ↵� z1. Hence, we can show 

that: 

R13 R11 > R11 R12 , !3 > !2, 

which means that the spread between agents 1 and 3 is greater than the spread between agent 1 

and 2 if, and only if, agent 3’s pre-trade exposure is su ciently high. In this case, agent 3 has too 

much exposure relative to other market participants and pays a higher price in equilibrium to buy 

protection against the underlying default risk. 

The third feature of this example is a counterintuitive trading pattern, in which an agent 

with higher pre-trade exposure sells protection to someone with lower pre-trade exposure to the 

underlying asset. Specifically, we have that 

2↵� 2 + 2  
z2 > 0 , !3 > !2.2↵� 

This means that agent 2 sells insurance to agent 1, even if agent 2 is more exposed than agent 

1 before trade, i.e., !2 > !1 = 0. This is true in equilibrium because agent 3 is significantly more 
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exposed to the underlying default risk. In equilibrium, agent 3 demands more insurance from agent 

1, who in order to supply such insurance, has to buy additional protection from agent 2. As a 

result, agent 1 buys insurance from agent 2 and sells to agent 3 in equilibrium. 

I.2.1.2 Derivation 

The following figure depicts the three-agent example: 

1 

2 3 

which means that the trading network is given by: 

2 3 
1 1 1  

6 7
G = 4 1 1 0  5 . (I.13) 

1 0 1  

Agents 1, 2, and 3 have pre-trade exposures given by !1, !2, and !3, respectively. Furthermore, 

we assume !1 = 0. 

Let us solve for agent 1’s net position using Equation (8): 

21 ↵� 
z1 = 1 (!2 + !3 + z1 + z2 + z3) =  (!2 + !3) . 

3 3↵� 2 + 2  

The derivation above uses the fact that !1 = 0, along with the clearing condition given by: z1 + 

z2 + z3 = 0. 

Using Equation (8) for agent 2, we have that agent 2’s post-trade exposure, z2 + !2, is given 

by: 

2↵� z1 + 2  �!2 z2 + !2 = 
↵� 2 + 2  

and, using z1 from Equation (I.12), agent 2’s net position, z2, is given by: 

✓ ◆✓ ◆ ✓ ◆� 
↵� 2 ↵� 2 2↵� 2 + 2  

z2 = !3 !2 . (I.14) 
↵� 2 + 2  3↵� 2 + 2  ↵� 2 

Similarly, agent 3’s net position and post-trade exposure are given by: 

2↵� z1 + 2  �!3 z3 + !3 = ,
↵� 2 + 2  
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and 

✓ ◆✓ ◆ ✓ ◆� 
↵� 2 ↵� 2 2↵� 2 + 2  

z3 = !2 !3 . 
↵� 2 + 2  3↵� 2 + 2  ↵� 2 

Equilibrium prices are be given by: 

1 
R12 µ = ↵� 2 (z1 + !1 + z2 + !2)

2 
21 2↵� z1 + 2  �!2 + 2  z1 = ↵� 2 ⇥ 

2 ↵� 2 + 2  

and 

21 2↵� z1 + 2  �!3 + 2  z1R13 µ = ↵� 2 ⇥ 
2 ↵� 2 + 2  

Taking the di↵erence, we have: 

✓ ◆ 
1 2 

R13 R12 = ↵� 2 (!3 !2) > 0 , !3 > !2. 
2 ↵� 2 + 2  

The equilibrium price for agent 1 if she would trade with herself is given by: 

R11 µ = ↵� 2(z1 + !1) 
2 = ↵� z1 

2↵� 
= ↵� 2 (!2 + !3) . 

3↵� 2 + 2  

Hence, we have: 

1 
2 2↵� 2z1 + 2  �!2 + 2  z1R12 µ = ↵� ,

2 ↵� 2 + 2  
21 2↵� z1 + 2  �!3 + 2  z1R13 µ = ↵� 2 ⇥ ,

2 ↵� 2 + 2  

and 

2 2↵� 2z1 + �!2 + �!3 + 2  z1 2R13 +R12 2R11 = ↵� 2↵� z1
↵� 2 + 2  

2 1 
2 ↵� z1 + 

2 (!2 + !3) +  z1 z1(↵� 2 + 2  )
= 2↵� 

↵� 2 + 2  

2 (!2 + !3) 2z1 = �↵ 
↵� 2 + 2  

2↵� 2 
1 

3↵� 2+2 
= �↵ 2 (!2 + !3) . 

↵� 2 + 2| {z } 
>0 
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Thus: 

R13 R11 > R11 R12 , !3 > !2. 

Based on Equation (I.14), notice that 

2↵� 2 + 2  
z2 > 0 , !3 > !2 

, 

which shows the third feature or the three-agent example. 

I.2.2 Five-agent example 

In this subsection, we consider a core-periphery network with two dealers and three customers. 

Agents 1 and 2 are dealers and agents 3, 4, and 5 are customers. Detailed derivations are provided 

in the Section I.2.2.2. 

I.2.2.1 Key Results 

Formally, the trading network in this example is given by: 

32 

G = 

6666664 

1 1 1 1 1  

1 1 1 1 1  

1 1 1 0 0  

1 1 0 1 0  

1 1 0 0 1  

7777775 
. (I.15) 

The trading network is also represented in Figure I.3. 

We can use Equation (8) in the main text and solve for dealers’ positions in equilibrium. The 

post-trade exposures of dealers id 2 {1, 2} to the underlying default risk is given by: 

zid + !id = ! (1 d) [! !id ] 

2 P
5where = 5↵� . The derivation above uses the clearing condition given by = 0. If ad 5↵� 2+2 i=1 zi 

dealer is less exposed to the underlying default risk than the average economy, i.e. ! > !id , then  

such dealer will be also less exposed after trade, i.e. !  > zid + !id . 

Post-trade exposures determine equilibrium prices, and the at which a CDS contract is traded 

in the dealer market, i.e., between agents 1 and 2, will be given by: 

Rd ⌘ R12 = µ+ ↵� 2! ↵� 2 (1 d) [! !d] , (I.16) 

where !d = (!1 + !2)/2 is the average pre-trade exposure among dealers. The dealer market price 

reflect dealers’ post-trade exposure. Thus, if dealers are less exposed to default risk, then dealer 

market prices will be lower in equilibrium if compared against the complete network counterfactual. 

Formally, Equation (I.16) shows that Rd < µ+ ↵� 2! if, and only if, ! > !d. 
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This example also features a customer market as customer and dealer trade with each other. 

We can again use Equation (8) and solve for customers’ post-trade exposure in equilibrium: 

zic + !ic = ! + (1  c) (!ic !) c (1 d) (! !d), ic 2 {3, 4, 5}. 

2↵� 2 
where c = . The post-trade exposure of a customer depends not only on her pre-trade 

2↵� 2+2 

exposure but also on the average pre-trade exposure of dealers. If dealers are less exposed to default 

risk on average (! > !d), then dealers take on credit risk in equilibrium lowering customers’ post-

trade exposures. 

The price from a trade between dealer id 2 {1, 2} and customer ic 2 {3, 4, 5} is given by: 

2 1 
Ridic = µ+ ↵� (zic + !ic + zid + !id ) ,2 

P
2 P

5and the average price in the customer market is defined as Rc ⌘ 1

6 id=1 ic=3 Ridic . We can 

express the average price in the customer market as a function of the average price in the dealer 

market: 


2↵� 2 

Rc = Rd + (! !d) (1  c) + (1  d) . (I.17) 
2 3 

Thus, we have that price are on average higher in the customer market than in the dealer market, 

whenever dealers are less exposed to default risk. Formally, Rc > Rd if, and only if, ! > !d. This  is  

a reflection of the customers’ post-trade exposure being higher than dealers’. Prices represent the 

average post-trade exposure of the two counterparties trading, and, when dealers and customers 

trade, prices are higher than when dealers trade with each other because dealers’ lower exposure 

to default risk. 

We can express the average price in the customer market as follows: 

 
↵� 2 4↵� 2 + 2  2 

Rc = µ+ ↵� 2! (! !d)2 5↵� 2 + 2  3 

2
+2 4 2 2!Notice that 4

5 
↵�
↵� >

5 because both and ↵� are positive. Thus, we have that Rc < µ+↵�2+2 

if, and only if, ! > !d. Although dealers’ post-trade exposure push prices up in the customer 

market relative to the dealer market, customers’ pre-trade exposure being lower than dealers pushes 

prices down relative to customers’ own shadow price of insurance. In equilibrium, the first e↵ect 

dominates and prices in the customers market are lower than they would be under the complete 

network counterfactual, given that dealers are on average less exposed to aggregate default risk. 
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I.2.2.2 Detailed derivations of the five-agent example 

Let us solve for the net position of dealers id 2 {1, 2} using Equation (8): 

!
5 5X X1 

zid + !id = (1  d) !id + d !i + zi
5 

i=1 i=1 

zid + !id = (1  d) !id + d! 

zid + !id = ! (1 d) [! !id ] 

zid = d (! !id ) , 

2
5↵� P

5where d = . The derivation above uses the clearing condition given by: = 0. The 
5↵� 2+2 i=1 zi 

price in the dealer market, i.e., between agents 1 and 2, will be given by: 

Rd ⌘ R12 = µ + ↵� 2! ↵� 2 (1 d) [! !d] , 

where !d = (!1 + !2)/2 is the average pre-trade exposure among dealers. 

Based on Equation (8) in the main text, the net position of customer ic 2 {3, 4, 5} is given by 

0 1✓ ◆ 22 2 X3↵� 3↵� 1 
zic + !ic = 1 !ic + ⇥ @ (!id + zid ) +  zic + !ic 

A 
3↵� 2 + 2  3↵� 2 + 2  3 

id=1 
✓ ◆

2 23↵� 3↵� 1 
zic + !ic = 1 !ic + ⇥ (2 [(1 d) !d + d!] +  zic + !ic )3↵� 2 + 2  3↵� 2 + 2  3 

✓ ◆
2 22↵� 2↵� 

zic + !ic = 1 !ic + ⇥ [(1 d) !d + d!]3↵� 2 + 2  3↵� 2 + 2  

zic + !ic = (1  c) !ic + c [(1 d) !d + d!] 

zic + !ic = (1  c) !ic + c [! (1 d) (! !d)] 

zic + !ic = ! (1 c) (! !ic ) c (1 d) (! !d) 

zic = c [(1 d) !d + d! !ic ] , 

2↵� 2 
where = .c 2↵� 2+2 

The price from a trade between dealer id 2 {1, 2} and customer ic 2 {3, 4, 5} is given by: 

2 1 
Ridic = µ + ↵� (zic + !ic + zid + !id )2 

1 1 
= µ + ↵� 2! c (1 d) (! !d) ↵� 2 [(1 c) (! !ic ) + (1  d) (! !d)] ,2 2 

and the average price in the customer market is given by: 

2 5XX1 
Rc ⌘ Ridic6 

id=1 ic=3 

20 



� � � � � � � � � � � �

� �

� � �

� �

� � �

� �

� � � � � � � � � � � � �
�

� � � � � � � � � �

�

� � � � � � � �

�

� � � � � �
�

� �
�

�

� � �

�

�

�
�

�

� � �

�
�

�

�
� �

� � � � � � � � � � � � �
�

� � � � � � � � � � � � � �
�

� �� � � � � � �

�

� � � � �

�

2 2↵� ↵� 
= µ+ ↵� 2! c (1 d) (! !d) [(1 c) (! !c) + (1  d) (! !d)] . 2 2 

Notice that 

1 
! !c = ! (!3 + !4 + !5)

3 
1 

= ! (!1 + !2 + !3 + !4 + !5 !1 !2)
3 
1 

= ! (5! 2!d)3 
5 

= ! (! !d) !d3 
2 

= (! !d) ,3 

hence we can simplify the average price in the customer market to: 


2 2↵� ↵� 2 

Rc = µ+ ↵� 2! c (1 d) (! !d) (1 c) (! !d) + (1  d) (! !d)2 2 3 


2↵� 2 
= µ+ ↵� 2! (! !d) c (1 d) (1 c) + (1  d)2 3 


2↵� 2 

= µ+ ↵� 2! (! !d) (1 d) (1  +  c) (1 c)
2 3 


2↵� 1 +  c 2 

= µ+ ↵� 2! (! !d) (1  c) (1 d) ⇥ 
2 1 c 3 

 
↵� 2 2 4↵� 2 + 2  2 

= µ+ ↵� 2! (! !d) ⇥ 
2 5↵� 2 + 2  2 3 

 
↵� 2 4↵� 2 + 2  2 

= µ+ ↵� 2! (! !d) . 
2 5↵� 2 + 2  3 

4↵� 2+2 4 2Notice that > 
5 because and ↵� are both positive. Thus, we have that 

5↵� 2+2 

Rc < µ+ ↵� 2!. 

We can also write the average price in the customer market as a function of the average price 

in the dealer market: 


2 2↵� ↵� 2 

Rc = µ+ ↵� 2! c (1 d) (! !d) (1 c) (! !d) + (1  d) (! !d)2 2 3 


2 2↵� ↵� 2 
= Rd c (1 d) (! !d) (1 c) (! !d) (1 d) (! !d)2 2 3 


2↵� 2 

= Rd + (! !d) c (1 d) + (1  c) + (1  d)2 3 


2↵� 2 
= Rd + (! !d) (1  c) + (1  d) . 

2 3 
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Thus, we have that 

Rc > Rd. 

I.2.3 Interpretation of 

To provide a sharper interpretation for the magnitude of , we start from agents’ first-order condi-

tions. They imply that when agent i trades with agent j, the marginal benefit of selling insurance 

to agent j has to be equal to its marginal cost. Specifically, Equation (5) shows that the spread 

collected from agent j (Rij ) equals the sum of the expected default, the marginal cost of increasing a 

position with j ( ij ) and the shadow cost of insurance (ẑi). To contextualize the magnitude of the 

parameter , we can take Equation (5) and average across all of agent i’s connected counterparties: 

1 
Ri = µ + zi + ↵� 2 (zi + !i) ,

Ki 

P
1 1where Ri ⌘ j:gij =1 Rij is the average price faced by agent i. The  term  zi is the average Ki Ki 

marginal cost of bilateral trading. If agent i is a net seller (zi > 0), then the average marginal 

cost of bilateral trading is positive, increasing the average price at which agent i is willing to sell 

additional insurance. Similarly, if agent i is a net buyer (zi < 0), then the average marginal cost 

of bilateral trading is negative, decreasing the average price at which agent i is willing to buy 

additional insurance. Using the benchmark calibration, dealers’ average marginal cost of bilateral 

trading is 1 zd ⇡ 5 basis points on average. n 

A marginal cost of 5 basis points represents about 3.8% of the average spread in the dealer 

market (5 out of 131 basis points). It is important to highlight, however, that this is the average cost 

of a marginal increase in bilateral exposure and is therefore greater than the average cost associated 

with the holding of a position. We can measure average costs using agents’ preferences. Specifically, 
P P 

the term 2 measures the total cost of trading with all the counterparties, and 
2Ki 

2 
2 j ij j ij 

measures the average cost per trade. To get an idea of the magnitude of average trading costs 

that could be compared to, for example, bid-ask spreads, we provide a parsimonious calculation 

using our model to infer dealers’ average per-trade cost of holding a concentrated positions with 

other dealers.6 In this case, the average cost of holding concentrated positions is 0.04 basis points 

per trade when dealers trade with other dealers. Hence, the model-implied average per-trade cost 

for an average dealer resulting from the desire to smooth out trades is much smaller than average 

bid-ask spreads, which are on the order of one or two basis points.7 Indeed, even if even we focus 

on the largest net seller dealer, its average total cost of holding concentration positions with other 

dealers is only 0.27 basis point per trade. 

We emphasize that the structure of the core-periphery network means that even a small friction 

can lead to quantitatively important e↵ects on prices and risk sharing. The network amplifies the 

6We use Equation (8) applied to dealers to infer ẑi, and  Equations  (5), (6) and (7) to  compute  ij for every dealer 
½ 2pair (i,j). Then, for every dealer i, we compute  2 ij and average across dealers j. 

7See Adrian, Fleming, Shachar, and Vogt (2017). 
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e↵ect of a small per-trade friction due to the fact that each unit of risk can be essentially re-traded 

multiple times across connected counterparties (see Equation (8)). As a result, the small per-

trade cost induced by bilateral concentration aversion leads to sizable price dispersion in our model 

(R̄ 
c R̄ 

d = 5.12 bps). It also leads to a substantial deterioration in risk sharing. If risk sharing 

were perfect, dealers’ post-trade exposures to the credit risk factor would equal the economy-wide 

average exposure, implying that d=1. Table 5 shows that in the calibrated model, d=0.32. 

This implies that dealer post-trade exposures put about two-thirds weight on their own pre-trade 

exposures, and only one third weight on the economy-wide average exposure. 

I.3 Model Extensions and Applications 

I.3.1 Model with Alternative Preference for Smoothing Trades 

In this section, we present a version of the model with an alternative quadratic trading cost function. 

Agent i’s optimization problem is given by: 

n n ✓ ◆2X X↵ zi max !i(1 µ) +  ij (Rij µ) (wi + zi)
2 2 gij ij (I.18) 

{ ij }n 2 2 Ki 1j=1,j 6=i j=1 j=1,j=6 i 

s.t. ij = 0  if  gij = 0  
nX 

zi ij = 0, 
j=1 

P 
where Ki = j gij . Given that the market clearing conditions imply that ii = 0, we assume 

ii = 0 and that agent i chooses { ij }n in its optimization problem. j=1,j 6=i 

The last term on objective function in Equation (I.18) captures represents a trading cost function 
ziwhere it is more costly to hold concentrated positions. Notice that Ki 1 is agent i’s average position 

across all its counterparties.8 Hence, if agent i equally spreads its trading positions among all its 

counterparties, then the last term is always zero, regardless of the agent i’s net position (zi). Next, 

we solve agent i’s optimization problem and also verify the second-order conditions. 

The first-order condition for agent i with respect to trading with agent j (gij = 1) is given by: 

✓ ◆✓ ◆ ✓ ◆Xzi 1 zi 1 
Rij µ = ↵� 2(!i + zi) +  ij 1 gis is

Ki 1 Ki 1 Ki 1 Ki 1 
s6=j,i✓ ◆ ✓ ◆Xzi zi 1 

= ↵� 2(!i + zi) +  ij gis is
Ki 1 Ki 1 Ki 1 

s6=i ✓ ◆ ✓ ◆ 
zi zi 1 

= ↵� 2(!i + zi) +  ij zi (Ki 1)
Ki 1 Ki 1 Ki 1 

P8As in the benchmark, we assume gii = 1 for every i, hence  Ki 1 =  j 6=i gij is the number of trading counter-
parties of agent j. 
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✓ ◆ 
zi = ↵� 2(!i + zi) +  ij ,

Ki 1 

where from the second to the third equality we used that fact that in equilibrium ii = 0, which 
P P 

implies zi = = j ij j=6 i ij . 

Solving agent i’s optimization problem, we have: 

8 ⇥ ⇤< zi 1 2+ Rij µ ↵(!i + zi) if gij = 1Ki 1 
ij = (I.19) :0  if  gij = 0  

where P X X µ)n
Ki 

1

1 j 6=i gij (Rij 
zi = ij = ij = wi (I.20) 

2↵� 
j=1 j=6 i 

The second-order condition is satisfied without additional assumptions. Let agent i’s objective 

function be given by: 

n ✓ ◆2X X↵ 2 2 ziFi = !i(1 µ) +  ij(Rij µ) (!i + zi) gij ij
2 2 Ki 1 

j=1 j=6 i 

which implies that whenever gij = 1  we  have:  

✓ ◆ 
@Fi zi = Rij µ ↵(!i + zi) 

2 
ij

@� ij Ki 1 

@2Fi 
✓ 

1 
◆ 

2 = ↵� 1
2@� Ki 1ij 

@2Fi 1
2 = ↵� + 

@� ij @� is Ki 1 

To write in matrix notation, we can restrict the derivation to connections available to agent i, 

that is, every j 6= i such that gij = 1. In Matrix notation, the Hessian becomes: 

 ✓ ◆� ✓ ◆ 
2 2 r 2Fi = I ↵� + 1 

1 
110 I ↵� 

1 
Ki 1 Ki 1 

1 
= 110↵� 2 I + 110 

Ki 1 

where 1 is a Ki 1 by 1 column vector of ones and I is an identify matrix. 

For any non-zero vector x = (x1, x2, ..., xKi 1)
0 , we have that: 

0 2 0 x r2Fix = x 0110 x↵ x x + x 0110 x
Ki 

1

1 
!2 !2X X X1

2 2 = ↵� xs x + xss Ki 1 
s s s 
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2 3!2 !2X X X1
2 24 5= ↵� xs x xss Ki 1 

s s s 
!2 !2X X X1

2 = ↵� xs xs xs < 0 
Ki 1 

s s s 

Hence, r2Fi is negative definite and the second-order condition holds. 

I.3.1.1 Equilibrium 

As in the benchmark model, market clearing conditions are given by: 

ij + ji = 0  8i, j = 1, . . . , n,  (I.21) 

and we assume no transaction costs: 

Rij = Rji. 

If agents i and j can trade (i.e., gij = gji = 1), we can use their optimality conditions from 

equation (I.19) and market clearing condition from equation (I.21) to solve for the equilibrium price 

of a contract between agents i and j: 

zi zj↵� 2(!i + zi) 1 + ↵� 2(!j + zj )Ki Kj 1 
Rij µ = (I.22) 

2 

Notice that prices no longer represent only the average the counterparties shadow cost of insurance. 

Instead, prices also depend on how much each counterparty deviates from its average trade. For 

instance, if dealer i sells (buys) a lot more to (from) agent j than to (from) other agents, then Rij 

will be higher (lower) to compensate dealers i for the concentrated trade. 

The net positions, {zi}i, are determined in equilibrium. Starting from the first-order conditions, 

we have: 
✓ ◆ 

ziRij µ = ij 
Ki 1

+ ↵� 2(!i + zi), 

which can be rearranged as follows by substituting prices from Equation (I.22): 

zi zj ✓ ◆↵� 2(!i + zi) 1 + ↵� 2(!j + zj )Ki Kj 1 zi = ij + ↵� 2(!i + zi)
2 Ki 1 ✓ ◆ 

zi zj zi↵� 2(!i + zi) + ↵� 2(!j + zj ) = 2  ij + 2↵� 2(!i + zi)
Ki 1 Kj 1 Ki 1 

✓ ◆ 
zi zj zi↵� 2(!i + zi) + ↵� 2(!j + zj ) = 2  ij . 

Ki 1 Kj 1 Ki 1 
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If we sum over valid j’s, i.e. j 6= i such that gij = 1, than we have: 

X X
2(Ki 1) ↵� 2(!i + zi) zi + ↵� gij (!j + zj ) gij 

Kj 

zj 
1 
= 0, 

j=6 i j 6=i 

which we can rearrange as follows: 

0 1 
X gij 1 #i 

X zj
!i + zi = (1  #i) !i + #i (!j + zj ) +  @zi gij A (I.23) 

Ki 1 2 Kjj j=6 i 

2
(Ki 1)↵�where #i = .

(Ki 1)↵� 2+2 

Equation (I.23) is intuitive. It is similar to Equation (8) in the paper, because agent i’s post-

trade exposure to aggregate default risk (zi + wi) is a convex combination of her pre-trade exposure 

(wi) and the average post-trade exposures of her trading counterparties. However, the last term in 

Equation (I.23) is new and it is a direct implication of the alternative trading cost function. The 

last term is positive if agent i is a larger net seller than the sum of the average net position of its 
P 

neighbors, that is, zi > j gij K
z 
j

j 
1 . Under the alternative trading cost function, a larger net seller 

is not penalized for holding large positions. Hence, it is less costly for agents to take on more credit 

risk. In equilibrium, large net seller are typically agents endowed with lower pre-trade exposure 

(i.e. low wi). Under the alternative trading cost function, these agents are able to take on more 

credit risk and hold larger net selling positions, which leads to larger post-trade exposure. The 

last term in Equation (I.23) captures this additional channel through which agents with large net 

positions can diversify away aggregate credit risk without bearing large trading costs by holding 

less concentrated position across its counterparties. 

I.3.1.2 Core-Periphery 

Assuming a core-periphery network structure, we can derive an expression for dealers’ pre-trade 

exposure as a function to parameters and their net positions. Under a core-periphery network, let 

us assume that, without loss of generality, agents j = 1, . . . , nd are core agents (dealers) and agents 

s = nd + 1, . . . , n  are peripheral agents (customers) . That is, for a dealer i 2 {1, . . . , nd}, we have  

gij = 1 for every j 6= i. For a customer i 2 {nd + 1, . . . , n}, gij = 1 for every dealer j = 1, . . . , nd, 

and gis = 0 for every customer s = nd + 1, . . . , n. 

Under core-periphery network assumption, we can simplify Equation (I.23) for dealer i as fol-

lows: 
0 1 

X gij 1 #d 
X zj

!i + zi = (1  #d) !i + #d (!j + zj ) +  @zi gij A 
Ki 1 2 Kj

j=6 i j 6=i 

1 +  #d 
X gij 1 #d 

X zj
zi = #d!i + #d (!j + zj ) gij

2 Ki 1 2 Kj 1 
j=6 i j 6=i 
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2#d 2#d 
X gij 1 #d 

X zj
zi = !i + (!j + zj ) gij

1 +  #d 1 +  #d Ki 1 1 +  #d Kj 1 
j=6 i j 6=i ✓ ◆ 

2#d 2#d !n !i zi zi = !i + 
1 +  #d 1 +  #d n 1 n 1  

1 #d nd zi n nd zd + zc
1 +  #d n 1 n 1 nd  

2#d n 1 3#d 2#d n 1 #d nd n nd!i = 1 zi + ! zd + zc
1 +  #d n 1 (1 + #d)(n 1) 1 +  #d n 1 1 +  #d n 1 nd  
2#d n 2#d n 1 3#d 1 #d nd!i = ! 1 zi 1 zd1 +  #d n 1 1 +  #d n 1 (1 + #d)(n 1) 1 +  #d n 1  

(1 + #d) (n 1) 1 3#d!i = ! 1 zi (I.24) 
2#dn (1 + #d)(n 1) 

(1 #d) (n 1) nd 1 zd2#dn n 1 

where ! is the average pre-trade exposure of all agents, zd is the average net position of dealers, zc 
2

(n 1)↵�is the average net position of customers, #d = , and zi is dealer i’s net position. We can 
(n 1)↵� 2+2 

also rewrite Equation (I.24) to net positions as a function of parameters and pre-trade exposures: 

h i 
2#d n !i) 

1 #d nd 1
1+#d n 1 (! 

1+#d n 1 zd 
zi = (I.25) 

1 3#d1 
(1+#d)(n 1) 

where the average net position of dealers is obtained by averaging Equation (I.26) across dealers, 

2#d n 
1+#d n 1 (! !d) 

zd = ⇣ ⌘ , (I.26) 
1 3#d 1 #d nd1 

(1+#d)(n 1) + 
1+#d n 1 1 

P
1 ndand !d = nd i=1 !i. 

Furthermore, we can write average prices among dealers as a function to parameters using 

Equation I.22, dealers’ net positions and dealers’ pre-trade exposures: 

nd ndX X1 
Rd ⌘ Rij

nd(nd 1) 
i=1 j=1,j=6 i 

nd nd zi zj
1 X X ↵� 2(!i + zi) 1 + ↵� 2(!j + zj )n n 1 = µ + 

nd(nd 1) 2 
i=1 j=1,j=6 i 

nd zi 2 1 ndzd zi1 X ↵� 2(!i + zi) 1 + ↵� 
1 (nd!d + ndzd !i zi)n nd n 1 nd 1 = µ + 

nd 2 
i=1 

zd 2 1 ndzd zd↵� 2(!d + zd) 1 + ↵� 
1 (nd!d + ndzd !d zd)n nd n 1 nd 1 = µ + 

2 
zd↵� 2(!d + zd) 1 + ↵� 2 (!d + zd) 1 zdn n = µ + 

2 
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= µ + ↵� 2 (!d + zd) zd. (I.27) 
n 1 

Similarly, the average price in the customer-dealer market is given by: 

n ndX X1 
Rc ⌘ Rij

nd(n nd) i=nd+1 j=1 

n nd zi zjX X ↵� 2(!i + zi) + ↵� 2(!j + zj )1 nd n 1 = µ + 
nd(n nd) 2 

i=nd+1 j=1 

n zi zd1 X ↵� 2(!i + zi) + ↵� 2(!d + zd)nd n 1 = µ + 
n nd 2 

i=nd+1 

zc zd↵� 2(!c + zc) + ↵� 2(!d + zd)nd n 1 = µ + (I.28) 
2 

nd ! nd!dwhere zc = 
1 zd and !c = . n n nd 

I.3.1.3 Calibration and Dealer Removal 

To calibrate the model, we follow the same procedure as in the benchmark model. However, under 

this alternative specification, we do not have a closed-formed solutions for the moments we match. 

Hence, we rely on numerical solution. Formally, we use Equation (I.24) to get dealers’ pre-trade 

exposure, and Equations (I.27) and (I.28) to compute average spreads in both dealer-dealer and 

dealer-customer markets. We choose , ↵ to simultaneously match these average spreads. Table 

I.6 has the calibrated parameters. 

Given the calibrated model, we conduct the dealer removal exercise by following the same steps 

as the dealer removal under the benchmark model. Given the calibrated parameters, we compute 

dealers’ pre-trade exposures using Equation (I.24). The we remove the di↵erent dealers from the 

economy and solve for equilibrium prices and allocations. Table I.7 reports the e↵ects of dealer 

removal on equilibrium spreads. 

There are interesting similarities and di↵erences between our benchmark model and the model 

under the alternative cost specification. 

Perhaps the most important similarity is the quantitative impact of dealer exit, which we 

simulate exactly as we do in the main text (Section 4). In the model based on Equation (I.18), 

spreads in the dealer market increase from 133 bps to 165.8 bps after the largest net-selling dealer 

exits the market (column (2), Table I.7). This is very similar to the increase from 133 bps to 164.3 

in dealer-dealer spreads reached after the dealer exits our benchmark model (Table 6 in the paper). 

These results suggest that our main conclusions are robust to modeling trading costs as a function 

of pure concentration, as opposed to the absolute size of bilateral positions. 

Nonetheless, our benchmark framework and the one featuring this alternative cost function do 

have distinct implications for how spreads are influenced by the shape of the network. In particular, 

some parts of Proposition 1 in the paper break down when using Equation (I.18): when using the 
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alternative cost function, dealer and customer markets are no longer below the level that obtains 

in a complete-network counterfactual. The key di↵erence between the two models is that marginal 

trading costs are symmetric in our benchmark model but are not when using Equation (I.18). By 

symmetric, we simply mean that a given bilateral position ij has the same marginal utility cost 

for both counterparties in a trade. In equilibrium, this means that buyers and sellers of CDS 

will trade at a price that is exactly halfway between their respective shadow costs of insurance. 

Given dealers are on one side of every trade, spreads are heavily tilted towards their shadow cost 

of insurance. And, because dealers start with relatively low initial exposures empirically, spreads 

in both dealer and customer markets are therefore lower than what would prevail under a complete 

network counterfactual. This intuition is discussed in the main text after Proposition 1. 

Under the alternative trading cost function in Equation (I.18), the marginal cost of trading 

is no longer symmetric. More concretely, suppose a customer is a net buyer of protection and 

equally spreads its trades across all its counterparties (i.e. all dealers). In this case, the customer’s 

marginal trading cost is zero because its trades are equally distributed across all its counterparties. 

Consequently, the customer would not require any price concession due to trading costs and would 

be willing to buy protection at a price equal to its shadow cost of insurance. In turn, prices between 

this customer and any other dealer would be equal to the customers’ shadow cost of insurance. In 

other words, under the trading cost function (I.18), prices will reflect how much counterparties 

deviate from their average position size. This means the average price in customer-dealer trades 

will not necessarily tilt towards dealers’ lower-than-average shadow cost of insurance. Thus, unlike 

our benchmark model, dealer-dealer and customer-dealers average spreads are not necessarily lower 

than what would prevail under a complete network counterfactual. 

I.3.1.4 Testing > 0 

In this subsection, we show that, within the model framework with alternative preference for 

smoothing trade, the coe cient from the price concession is negative if, and only if, > 0. The 

model with alternative trading cost specification is detailed in Internet Appendix I.3.1. In  the  

model, price concession and  between agents i and j are defined as: 

8 
<Rmax 

i Rij if ij > 0 
PriceConcessionij = , (I.29) : RminRij i if ij < 0 

| ij |
ij = P , (I.30) n 

s=1 | is| 

where Rmax = maxs Ris and Rmin = mins We will restrict our analysis to parameterization in i i Ris. Pnwhich ij is well defined, that is is| > 0 for every i. s=1 | 
For ij > 0, that is, agent i sells protection to agent j, we can write the first-order condition as 
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follows: 
✓ ◆ 

ziRij µ = ↵� 2 (wi + zi) +  ij 
Ki 1 
ziRij µ = ↵� 2 (wi + zi) +  ij 

Ki 1 
ziRij µ = ↵� 2 (wi + zi) +  | ij | 

Ki 1 
ziRij = µ ↵� 2 (wi + zi) +  

Ki 1 
| ij | . 

By adding Rmax on both sides, we have: i 

ziRmax = Rmax 
i Rij i µ ↵� 2 (wi + zi) +  

Ki 1 
| ij | 
nX 

Rmax = Rmax zi | ij |
Rij µ ↵� 2 (wi + zi) +  | is| Pi i nKi 1 

s=1 is|s=1 | 

Rmax s b̃sRij = ã i ij , (I.31) i i 

P s = Rmax zi nwhere ãi i µ ↵� 2 (wi + zi) +  Ki 1 and b̃si = s=1 | is| 0. 

For ij < 0, that is, agent i buys protection to agent j, we can write the first-order condition 

as follows: 

ziRij µ = ↵� 2 (wi + zi) +  ij 
Ki 1 

ziRij = µ + ↵� 2 (wi + zi) | ij | . 
Ki 1 

By subtracting Rmin on both sides, we have: i 

Rmin Rmin ziRij = + µ + ↵� 2 (wi + zi) | ij |i i Ki 1 
nXziRmin Rmin | ij |

Rij i = i + µ + ↵� 2 (wi + zi) | is| PnKi 1 is|s=1 s=1 | 

Rmax b b̃bRij = ã (I.32) i i i ij , 

Pb Rmin zi bb n bs b̃bwhere ãi = i + µ + ↵� 2 (wi + zi) Ki 1 and ˜ 
i = s=1 | is|. Notice that ˜ 

i = i . 

The rest of the derivation is identical to the derivation in Internet Appendix I.1.2 from Equation 
s b ˜ s b(I.5) onward by using ãi , ãi , b

s
i , and b̃bi , instead of ai , ai , b

s
i , and bi

b, respectively.  

I.3.2 Price Impact 

In this subsection, we derive an alternative version of the benchmark model in which agents in-

ternalize the e↵ect of their own exposure to the underlying risk on equilibrium prices. In the 

benchmark model, equilibrium prices are given by Equation (7) in the main text, which means 

that when agent i sells insurance to agent j, then  she  receives  Rij as payment. Notice, however, 

30 



� � � � �

�

�
� � � � � � �

�

�

�

� �

� � ��

� � ��

� �

� � �

�

this equilibrium price depends on both agents’ post-trade exposures. Notice that agent i optimally 

chooses the total net exposure to the underlying default risk, i.e., zi, but takes equilibrium prices 

as given. In this subsection, we derive equilibrium allocations and prices when agents take into 

account the e↵ect of their net exposure to the underlying default risk on prices. 

To solve this model, we guess and verify that the equilibrium price in a bilateral trade will be 

a linear combination of the counterparties’ post-trade exposures. Specifically, we assume that: 

2 2Rij µ = A + B↵ zi + C↵ zj + D↵ 2!i + E↵ 2!j , 

where A, B, C, D, and E are coe cients to be determined. The assumption here is similar 

to a Cournot competition model in which firms take their competitors’ quantities as given and 

equilibrium is pinned by the fixed point of best-responses. In our setting, agent i take j’s exposure 

and all pre-trade exposures as given but internalize the e↵ect of of i’s exposure on equilibrium 

prices. 

Formally, agent i solves the following optimization problem: 

n nX X↵ 
2 2 max wi(1 µ) +  ij (Rij µ) (wi + zi)

2 
ij{ ij }nj=1,zi 2 2 

j=1 j=1 

subject to 

ij = 0  if  gij = 0, 
nX 

zi = ij , 
j=1 

and 

Rij µ = A + B↵ 2 (zi + !i + zj + !j ) . 

Hence, the first-order conditions imply: 

X 
Rij µ + is 

@ 
Rij = ↵� 2(zi + !i) +  ij

@� ijs 

=) Rij µ = ↵� 2(zi + !i Bzi) +  ij 

Under the no transaction cost assumption, i.e., Rij = Rji, along with the bilateral clearing 

condition, i.e., ij + ji = 0, we can write equilibrium prices as follows: 

2↵� 
Rij µ = [(1 B)zi + !i + (1  B)zj + !j ]

2 

Applying the method of undetermined coe cients to our initial guess gives 

A = 0, 

1 
B = C = ,

3 
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and 

1 
D = E = . 

2 

Hence, equilibrium prices are given by: 

2 1 
Rij µ = ↵� [!i + !j + z̃i + z̃j ] , (I.33) 

2 

and first-order condition can be written as: 

Rij µ = ↵� 2 (!i + z̃i) +  ij , (I.34) 

2where z̃i = 
3 zi. 

To get derive equilibrium allocations, we can combined Equations (I.33) and (I.34), along with 
Pnthe fact that zi = ij :j=1 

⇣ ⌘ nX 
˜z̃i + !i = 1 i !i + ˜

i g̃ij (z̃j + !j ) 8i = 1, . . . , n  (I.35) 
j=1 

2 gij n Ki↵�where z̃i = 
3 zi, g̃ij = , Ki = 

P 
j=1 gij , and ˜i = 

2 2 (0, 1). Ki Ki↵� 2+3 

Notice that Equation (I.35) is extremely similar to Equation (8) in the main text, except that 

under price impact we have z̃i and ˜i instead of zi and i. As a result, the analyses discussed in 

the paper hold in a price impact environment as well. 

I.3.3 Model with Speculative Trading Motive 

In this section, we consider a variation of the model in which agents disagree about expected 

default—they agree to disagree. Specifically, agent i beliefs expected default is µi = µ+ ⌫i, where  

⌫i is independent across agent with mean zero. In this case, agents trade not only to share risk 

but also for speculative reasons. For instance, if agent k is more optimistic about the expected 

default than agent l, i.e.  µk < µl, then agent k would be willing to sell insurance to agent l. In  

equilibrium, the total net positions of agent depends, of course, on the entire network structure 

and every agents’ trades with other counterparties. Formally, in this variation of the model, agent 

i’s optimization problem becomes: 

n nX X↵ 2 2 2 max wi(1 µi) +  ij (Rij µi) (wi + zi) ij , { ij }nj=1 2 2 
j=1 j=1 

Pnsubject to ij = 0  if  gij = 0, and zi = j=1 ij . Similar to the benchmark model, all bilateral 

markets clear, i.e. ij + ji = 0 for every i and j, and there are no transaction costs between 

counterparties, i.e. Rij = Rji for every i and j. 
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Agent i’s optimality conditions are given by: 

Rij µi ↵ (wi + zi) 
2 

ij = 0  8j s.t. gij = 1, 

ij = 0  8j s.t. gij = 0, 
nX 

zi ij = 0. 
j=1 

Next, we highlight two properties of the competitive equilibrium with heterogeneous beliefs about 

the expected default. 

First, heterogeneity in beliefs (µi’s) is isomorphic to heterogeneity in pre-trade exposures (!i’s) 

in terms of equilibrium prices and quantities traded. Notice that the equilibrium allocation is the 

solution to the following system of equations: 

Rij µi ↵ (wi + zi) 
2 

ij = 0  8j s.t. gij = 1  

ij = 0  8j s.t. gij = 0  
nX 

zi ij = 0  
j=1 

ij + ji = 0  

Rij Rji = 0  

Thus, any combination of µi and !i such that µi + ↵� 2wi remains constant delivers the same 

allocation and prices in equilibrium, i.e. ’s and R’s are exactly the same, and heterogeneity in 

beliefs is isomorphic to heterogeneity in pre-trade exposures. In other words, trading motives do 

not change equilibrium allocation whether these incentives are based on speculative or risk sharing 

motives. Therefore, our systemic risk analysis holds regardless of agents’ motive for trade. 

The intuition behind this result is that higher pre-trade exposure is allocationally equivalent to 

believing in a higher default probability, even though the reason for trade is very di↵erent. On one 

hand, an agent with higher pre-trade exposure is willing to buy more protection against aggregate 

default in order to protect herself against default risk. On the other hand, someone who beliefs 

that the default probability is higher is also willing to buy more insurance because the current 

exposure is perceived as riskier. Thus, higher !i and higher µi are equivalent in terms of demand 

for insurance. 

Second, in terms of risk reallocation, heterogeneity in beliefs (µi’s) is not isomorphic to hetero-

geneity in pre-trade exposures (!i’s). Any combination of µi and !i such that µi + ↵� 2wi remains 

constant delivers the same allocation and prices in equilibrium, i.e. ’s, z0 and R’s are exactly 

the same. For risk reallocation though, what matters is agents’ post-trade exposures, which are 

given by zi + !i. These will vary with !i even if µi + ↵� 2wi remains constant. In equilibrium, an 

agent who beliefs in a higher (lower) expected default buys more (less) insurance against aggregate 

default risk, moving further away from an allocation with more risk-sharing. 

33 



References 

Adrian, T., M. Fleming, O. Shachar, and E. Vogt (2017): “Market Liquidity after the 

Financial Crisis,” Federal Reserve Bank of New York Sta↵ Report. 

Hollifield, B., A. Neklyudov, and C. Spatt (2017): “Bid-ask spreads, trading networks, and 

the pricing of securitizations,” The Review of Financial Studies, 30(9), 3048–3085. 
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APPENDIX TABLES 

Table I.1: Dynamics of the CDS Trading Network 

Panel A: The Probability of Breaking and Forming Connections 

No Connectiont+1 Connectiont+1 

No Connectiont 99.99% 0.01% 

Connectiont 0.91% 99.09% 

Panel B: Measuring the Persistence of the Network 

Degree Centrality Eigenvector Centrality 

AR-Coe cient t-statistic AR-Coe cient t-statistic 

p10 1.0* - 1.0* -

p20 0.80 19.67 0.80 19.47 

p40 0.92 32.25 0.97 50.21 

p60 0.92 33.85 0.90 30.18 

p80 0.90 25.65 0.84 23.17 

p90 0.92 35.47 0.98 72.30 

Notes: Panel  A  of  this  table  compute  the  likelihood  of  breaking  or  forming  a  new  connection  in  the  CDS  trading  network  at  

time t + 1,  conditional  on  connection  status  at  time  t. At  time  t, we  count  the  number  of  counterparty  pairs  that  are  not  

connected, where connection status is determined by whether or not there is an open position between two counterparties. For 

the set of counterparties that are not connected at time t, we  then  compute  the  fraction  that  remain  unconnected  and  the  

fraction that become connected at time t + 1.  We  repeat  the  same  exercise  for  the  set  of  counterparties  that  are  connected  at  

time t. We  then  average  these  proportions  over  all  dates  in  our  sample  to  produce  Panel  A.  Panel  B  of  the  table  contains  a  

complimentary way to understand the dynamics of the CDS network. On each date t, we  compute  both  the  degree  centrality  

and eigenvector centrality of every counterparty in the network. Let cp,t denote the p-th percentile of centrality metric c across 

all counterparties on date t. Next,  we  model  each  cp,t as an AR(1) process, i.e. cp,t+1 = ⌘p + pcp,t + " p,t+1. The  table  

shows the estimated p and its associated t-statistic for each percentile of the given centrality metric. See Section 2 for more 

details on the specific centrality measures. The (*) for the row in p10 means that the degree centrality of the 10th-percentile 

takes the same value for the entire sample, so estimating an AR(1) process is not feasible. The sample is weekly and runs from 

2010-01-04 to 2013-12-31. Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing 

Corporation. 
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Table I.2: Average Dealer CDS Exposure 

Method z̄d 

Notional, Beta-Weighted 0.045 

DV01, Beta-Weighted (%) 0.22 

Notes: This  table  presents  some  basic  summary  statistics  about  the  average  credit  exposure  of  dealers  to  the  aggregate  credit  

risk index, denoted by z̄  d. Our  aggregate  credit  risk  index  on  each  date  is  the  cross-sectional  average  of  all  5-year  U.S.  CDS  

spreads in the Markit database. We define exposure to this index in two ways: (i) a beta-weighted average of the net notional 

sold across all CDS positions, with betas computed with respect to the aggregate credit risk index; and (ii) a beta-weighted 

average DV01 across all positions, which just measures how much the entire CDS portfolio would lose if there was a one hundred 

basis point move in the aggregate credit risk index. See Appendix I.1.4.3 for complete details. In all cases, positive values 

indicates that dealers are on average net sellers. For all metrics, we compute the exposure of dealers in our sample, then scale 

this exposure by their market capitalization. This is what we call a dealer-specific zi. z̄d in each week is the cross-sectional 

average of each zi across dealers. The table reports average weekly z̄  d over the period January 2010 through December 2013. 

Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 

Table I.3: Customer Removal 

Benchmark Customer Removal 

(1) (2) (3) 

Number of dealers 14 14 14 

Complete network R (bps) 143.04 143.74 172.76 

Rd (bps): 133.00 133.22 142.48 

Rc (bps): 138.12 138.58 157.92 

zd 0.045 0.048 0.137 

Notes: This  table  reports  the  number  of  dealers,  the  average  spreads  under  the  complete  network,  the  average  spreads  in  the  

dealer market, the average spreads in the customer market, and the average net position of dealers. We define dealers precisely 

in Appendix C. Column (1) reports our benchmark  calibration.  In Column (2) reports the  results after removing a customer  

with the same pre-trade exposure as the largest net-seller dealer. Column (3) reports results after removing a customer with 

the same net positions as the largest net-seller dealer. Source: Authors’ analysis, which uses data provided to the OFR by the 

Depository Trust & Clearing Corporation. 
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Table I.4: Dealer Removal Robustness: ! 

Benchmark Top 90th prc. 

(1) (2) (3) 

Panel A: Assuming ! = 0.5 

Number of dealers 14 13 13 

Complete network R (bps) 143.04 144.15 143.26 

Rd (bps): 133.00 164.59 138.66 

Rc (bps): 138.12 154.18 141.01 

zd 0.045 0.092 0.021 

Panel B: Assuming ! = 3  

Number of dealers 14 13 13 

Complete network R (bps) 143.04 143.70 143.17 

Rd (bps): 133.00 164.13 138.58 

Rc (bps): 138.12 153.73 140.92 

zd 0.045 0.092 0.021 

Median 

(4) 

13 

143.01 

131.35 

137.29 

0.053 

13 

143.02 

131.36 

137.30 

0.053 

Bottom 

(5) 

13 

142.73 

123.03 

133.06 
‘ 

0.089 

13 

142.85 

123.17 

133.19 

0.089 

Notes: This  table  reports  the  number  of  dealers,  the  average  spreads  under  the  complete  network,  the  average  spreads  in  the  

dealer market, the average spreads in the customer market, and the average net position of dealers. We define dealers precisely 

in Section I.1.1.2. In  Column  (1)  reports  our  benchmark  calibration. In  Column  (2)  reports  the  results  after  removing  the  

largest net-seller. Column (3) reports results after removing one dealer at the 90th 
percentile. Column (4) reports results 

after removing the dealer with the median net position, and Column (5) reports results after removing the dealer that is the 

largest net buyer in the baseline model. In Panel A, we report results assuming ! = 0.5, while in Panel B we report the results 

assuming ! = 3.  In  each  Panel,  given  the  assumed  value  for  !, we  recalibrate  the  model  following  the  procedure  described  in  

Section 3.4. Source:  Authors’  analysis,  which  uses  data  provided  to  the  OFR  by  the  Depository  Trust  &  Clearing  Corporation.  
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Table I.5: Dealer Removal Robustness: DTCC Dealers 

Benchmark Top 90th prc. Median Bottom 

(1) (2) (3) (4) (5) 

Number of dealers 26 25 25 25 25 

Complete network R (bps) 145.11 145.89 145.28 145.10 144.81 ‘ 

Rd (bps): 133.00 147.49 135.74 132.39 126.74 

Rc (bps): 139.28 146.66 140.68 138.97 136.10 

zd 0.062 0.008 0.049 0.065 0.093 

Notes: This  table  uses  the  DTCC  definition  of  dealers  and  recalibrates  the  model  following  the  procedure  described  in  Section  

3.4. We  report  the  number  of  dealers,  the  average  spreads  under  the  complete  network,  the  average  spreads  in  the  dealer  market,  

the average spreads in the customer market, and the average net position of dealers. In Column (1) reports our benchmark 

calibration. In Column (2) reports the results after removing the largest net-seller. Column (3) reports results after removing 

one dealer at the 90th 
percentile. Column (4) reports results after removing the dealer with the median net position, and 

Column (5) reports results after removing the dealer that is the largest net buyer in the baseline model. Source: Authors’ 

analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 
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Table I.6: Calibration under Alternative Trading Cost Function 

Parameter Value Source 

z̄d 0.045 DTCC Data 2010-2013 

R̄c R̄d (bps) 5.12 DTCC Data 2010-2013 

R̄d (bps) 133.00 DTCC Data 2010-2013 

n 723 DTCC Data 2010-2013 

nd 14 DTCC Data 2010-2013 

L = Loss-Given-Default 60.60% Markit 

p = Probability of Default 0.65% Moody’s 

↵� 2! + µ 138.12 Model Implied 

↵ 4.16 Model Implied 

7.98 Model Implied 

Notes: This  table  shows  parameters  used  to  calibrate  the  model  under  the  alternative  trading  cost  specification.  z̄  d is the time-

series average of dealer exposure. For each week, we compute the average dealer z̄  d across dealers, then report the time-series 
average for the full sample in the table. Section 3.3.1 contains a full description of this procedure. Dealers are those identified 
by the algorithm described in Appendix C. Rc Rd is the estimate that comes out of a regression of transaction spreads on a ¯ ¯ 

dummy variable for if the transaction is a customer-dealer trade (see Table 4 for complete details). Rd is the average transaction ¯ 

spread in the CDS market from Table 3. n is the total number of counterparties in the network. nd is the number of dealers. L 
and p are the physical loss-given-default and probability of default for the firms that are included in our estimation of Rc Rd. ¯ ¯ 

See Table 4 for more details on this set of firms. The remaining parameters in the table are implied by our structural model. 
Source: Authors’ analysis, which uses data provided to the OFR by The Depository Trust & Clearing Corporation. 
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Table I.7: Dealer Removal under Alternative Trading Cost Function 

Benchmark Top 90th prc. Median Bottom 

(1) (2) (3) (4) (5) 

Number of dealers 14 13 13 13 13 

Complete network R (bps) 138.12 138.65 138.22 138.10 137.96 ‘ 

Rd (bps): 133.00 165.80 138.87 131.27 122.63 

Rc (bps): 138.12 138.65 138.22 138.10 137.96 

zd 0.045 0.241 0.006 0.061 0.136 

Notes: This  table  reports  the  number  of  dealers,  the  average  spreads  under  the  complete  network,  the  average  spreads  in  the  

dealer market, the average spreads in the customer market, and the average net position of dealers. We use the alternative 

trading cost function described in Section I.3.1. Column  (1)  reports  our  benchmark  calibration. In  Column  (2)  reports  the  

results after removing the largest net-seller. Column (3) reports results after removing one dealer at the 90th 
percentile. Column 

(4) reports results after removing the dealer with the median net position, and Column (5) reports results after removing the 

dealer that is the largest net buyer in the baseline model. Source: Authors’ analysis, which uses data provided to the OFR by 

The Depository Trust & Clearing Corporation. 
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APPENDIX FIGURES 

Figure I.1: The Empirical G Matrix 

Notes: This  figure  plots  the  matrix  G where element Gi,j equals one if i and j have an open position with each other in our 

sample, for all counterparties with an open position in the investment grade index. If i and j do not have an open position, Gi,j 

equals zero. Counterparties are ordered by their total number of connections, highest to lowest. Theoretically, a core-periphery 

network has a structure as in Definition 2.4, with  ones  along  the  diagonal, a  core  of  dealers  each  represented  by  a  columns  

and row of ones, and zeros elsewhere. This plot shows the close approximation in the data to the theoretical core-periphery 

structure. Dealers are represented by the left-most columns, and top-most rows, and customers are connected to these dealers, 

but not each other. Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing 

Corporation. 
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Figure I.2: Dealer Selection 
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Notes: In  this  figure,  we  report  our  selection  algorithm  outcome  for  di↵erent  subsamples.  We  start  with  full  network  matrix  

that includes all the existing counterparties, compute who is a dealer based on the algorithm. In a second step, we sort all 

counterparties based on degree and then transaction volume. We then interactively remove one counterparty at a time, based on 

the previous degree-volume sort. Every time we remove a counterparty, we rerun the algorithm for the remaining counterparties. 

We plot the number of dealers implied by our selection algorithm against the number of remaining agents in this interactive 

procedure. Source: Authors’ analysis, which uses data provided to the OFR by the Depository Trust & Clearing Corporation. 

Figure I.3: Five-agent example 

1 2 

3 4 5 

Notes:This figure represents an economy with five agents, in which agents 1 and 2 are connected to every agent and agent 3, 4, 

and 5 are not connected to each other. The network matrix in this example is given by Equation (I.15). 
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