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Distributed financial networks are a feature of the international financial system

of payments. Still, they are also increasingly vulnerable to disruption as new
technologies create unexpected opportunities for surprises, threats, and shocks.

These vulnerabilities arise due to current economic and technical trends, including
the increasing velocity and digitalization of individual economic activity, as well
as the growing interconnectedness of the global economy. In this brief, we discuss
these financial system challenges through the lens of a credit card payment system.

We present a range of integrated tools and procedures tailored to meet the needs of
the financial firm, network, and system as no single “silver bullet” solution exists.

Instead, protecting networks requires multiple, integrated solutions that work
together to reduce system fraud and errors.

INTRODUCTION

Distributed financial networks are a feature of the
international financial system of payments. Still, they
are also increasingly vulnerable to disruption as new
technologies create unexpected opportunities for
surprises, threats, and shocks. These vulnerabilities
arise due to current economic and technical trends,
including the increasing velocity and digitalization of
individual economic activity as well as the growing
interconnectedness of the global economy. Due to
these expanding economic relationships and evolving
forms of financial intermediation, new challenges
emerge over addressing vulnerabilities such as juris-
dictional regulatory differences, cyber-attacks, and
transnational fraud. These factors have taxed finan-
cial and regulatory organizations’ ability to ensure
consistency across distributed financial systems and

maintain their stability due to potential losses of both
data integrity and user confidence.

Addressing these vulnerabilities at the institutional
and transaction level is challenging, but so is iden-
tifying and recovering from coordinated systemic
shocks across multiple institutions. Financial institu-
tions typically ensure their system resiliency through
individual backups, [12] but when securing a distrib-
uted Financial Market Infrastructure (FMI), similar
practices require far more coordination, since data
storage and their backup are uncoordinated across
institutions [3].

This brief addresses the challenges presented by
distributed FMIs in four parts. First, we investigate
the processing of consumer payment transactions
as an example to determine industry best practices.
This is done using anonymized Mastercard payment
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data [7] to examine transaction relationships among
firms rather than at a specific firm. Second, we look
at the networks that result from these transactions
among firms, which allows us to explore an empir-
ical example, albeit limited, of a distributed financial
network.

Third, we review ways to identify significant changes
to the distributed system. The data can reveal
multiple insights, but doing so requires analyzing
and synthesizing many transactions. We demonstrate
a model that can perform this automatically. Fourth,
we look at institutional processes that protect the
financial system when problems occur. To maintain
the resilience of financial systems, informed actions
must be undertaken to address identified problems.
Using Mastercard credit card payments, we focus on
transaction fraud. Using the demonstrated detection
models, the number of problems and system features
can be expanded to include other problematic
dynamics including system attacks. The ability to
detect and address financial systems threats beyond
transaction fraud can be expanded to ensure finan-
cial network integrity and maintain user trust.

PROCESSING PAYMENT
TRANSACTIONS

Mastercard credit card data proves an excellent
example of a distributed financial network because it
provides worldwide transaction coverage to more
than 210 countries [8]. The credit card transaction

data we received from Mastercard was comprised of
two transaction components, authorization and
clearing, as shown in Figure 1. When a customer
makes a purchase at a merchant, the customer initi-
ates a transaction authorized through a call from the
acquiring (merchant’s) bank to the issuing (custom-
er’s) bank. This authorization allows the customer to
make the purchase with the understanding that the
item will be paid for later through the clearing process
in which the balance between the issuing and
acquiring banks is settled.

The transaction data is anonymized' from customer
information and contains information on autho-
rizing and clearing transaction records. Specifically,
the data comes from Canadian Mastercard transac-
tions and are for March 2020 and 2021 representing
approximately 500 thousand transactions per day.?

We generate a set of consistency metrics to assess if
a problem exists between the issuing and acquiring
banks in the distributed financial network. For
example, high-level balances between banks are
calculated from each bank’s perspective, and these
are then checked against each other periodically in a
periodically generated consistency report. Significant
discrepancies then provide the impetus for more
detailed analysis and investigation into the source of
the discrepancy, which contributes to the confidence
that the financial network is functioning propetly. In
this case, calculation and comparison of these reported
balances did not yield any significant discrepancies,

Figure 1. Mastercard Use Case
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which was expected as Mastercard spends consider-
able effort ensuring that bank balances are accurate.

We calculated six variables to support the consistency
analysis: (1) total transactions; (2) total cleared trans-
actions; (3) total incomplete transactions; (4) total
corrupt transactions; (5) transaction minimum and
maximum; (6) transaction expected value. Credit
card transaction types are categorized by Merchant
Category Codes (MCCs) [4], of which there are
approximately 500. Four code categories were selected
given their prominence and potential vulnerability:
(1) restaurants; (2) airfare; (3) gambling; (4) crypto/
quasi-cash, which are shown in Table 1.

Table 1. Canadian Transactions by Merchant
Category Codes

Merchant Category Transactions Mean

Code (MCC) Per Day Transaction Value
Restaurants 500,000 $50 CAD
Airfare 30,000 $500 CAD
Gambling 3,000 $70 CAD
Crypto/quasi-cash 300 $1000 CAD

Note: Canadian transactions characterized broken out by Merchant
Category Codes (MCCs) to show significant differences among
Transactions per day and Mean transaction value.

Source: Authors’ analysis [7]

Table 1 shows that most credit card transactions are
restaurant transactions with the number reducing by
an order of magnitude from airlines to gambling and
crypto / quasi-cash. However, in terms of transac-
tion value, the airline transactions are about an order
of magnitude greater than restaurants, and crypto
/ quasi-cash is significantly higher than the other
three categories. This shows that MCC sub-catego-
ries can have very different characteristics, reflecting
each category’s particular dynamics. In terms of raw
numbers, over 90% of transactions are restaurant
transactions, which tend to have lower costs and often
exhibit a difference between clearing and authorizing
amounts due to tips. These look very different from

crypto transactions, which are much lower volume
but significantly higher value.

Table 2 shows a subset of transactions broken out by
MCC and categorized as cleared, incomplete, and
corrupt. These categories are determined by transac-
tion response codes, which are defined by the
International Organization of Standards (ISO) [9].
Cleared transactions have a response code denoting,
“Approved or completed.” Such transactions have a
corresponding clearing transaction that normally
occurs within 48 hours of the authorization. However,
we observed that restaurants exhibit more delay than
the other MCCs, sometimes appearing more than a
week after the initial authorization. Incomplete
transactions, of which there are approximately 50,
denote various transaction status conditions and
problems. For example, Incomplete Transactions are
those that are blocked because of a simple problem
that the cardholder can easily correct, such as “insuf-
ficient funds, over credit limit,” “transaction not
permitted to issuer/cardholder,” and “not declined,
valid for zero amount transactions” ( i.e., transaction
performed not for a purchase but to determine if the
card is active). A subset of the Incomplete Transaction
types prevents potentially Corrupt Transactions such

Table 2. Canadian Transactions for March 1, 2020

Merchant
Category Cleared Incomplete Corrupt
Code (MCC) Transactions Transactions Transactions
Total 98.0% 1.9% 1.4%
Restaurants 98.9% 1.1% 0.7%
Airfare 91.7% 8.1% 7.0%
Gambling 83.0% 16.1% 11.8%
Crypto/quasi- | 57 go 20.7% 16.6%
cash

Note: Canadian transactions for March 1, 2020, characterized by
transaction response codes [9] and categorized as cleared, incom-
plete, and corrupt.

Source: Authors’ analysis [7]
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as “capture card,” “do not honor,” and “invalid card
number.”

The transaction analysis in Table 2 is over a single
day (March 1, 2020) and constrained geography
(Canada). More extensive analysis, both temporally
and geographically, would provide additional results
that could be analyzed and tracked over time. Still
this limited MCC and response code-based analyses
gives a sense of the character and richness of credit
card transaction data.

EXPLORING PAYMENT NETWORKS

Credit card transactions combine to create network
relationships among acquiring and issuing banks.
Looking beyond the set of bilateral bank relation-
ships allows us to consider how the larger payments
system creates the distributed financial network. To
give a sense of the size and scale of the Mastercard
network of banks in Canada, there are 42 acquiring
banks and 96 issuing banks in the dataset. Of the
4,032 possible combinations of issuing and acquiring
bank transactions, we find 1,146 (28%) have transac-
tional relationships.

Note that these relationships reveal significant clus-
tering. That is, there are few banks with large numbers
of relationships and many banks with few relation-
ships, which is described as a power law relationship
and is common in dynamic networks [1]. For
example, Figure 2 shows that acquiring banks are
highly centralized, especially with 186 at the upper
left, while the issuing banks are more evenly distrib-
uted. Note also bank 389 at the bottom center is
both an acquiring and issuing bank, which is another
form of centralization. Note that these graphics are
created from one day of transaction data, so further
analysis is required to determine if and how these
relationships evolve over time. This visualization
shows a dense network of edges, each representing a
relationship between two financial institutions,
which, in aggregate, compose a highly complex and
interconnected financial network, highlighting the
need for protection, not just of the firms themselves,
but of the system as a whole.

Figure 2. Sankey Diagram Showing Transaction Flow
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Note: Sankey diagram showing transaction flow from acquiring/
merchant (left) to issuing/customer (right) bank, where width of
connection indicates the number of transactions between bank
pairs, filtered to top 25% of relationships by volume. Note bank
389 (bottom center) operates as both an authorizing and issuing

bank.

Source: Authors’ analysis [7]

IDENTIFYING SYSTEMIC CHANGES

The collected transaction data can be used to identify
shifts and changes in the underlying financial system.
For example, we find two significant systemic changes
when we compare March 2020 to March 2021 as
shown in Figure 3. First, daily transaction counts
for March 2020, shown in orange, reveal a signifi-
cant decrease in transaction volume as measured by
the number of authorizations in the second half of
the month. Second, for March 2021, the transaction
volume was significantly decreased compared to the
previous year, March 2020, but was relatively stable
across the month. This leads to two questions: first,
what caused these changes, and second, can such
changes be identified automatically?

Before offering a possible answer to the first ques-
tion, note that this is typically the kind of puzzle

that confronts those who notice unusual trends in

July 30, 2024 | Page 4



transaction data. The change may be easily noticed,
but identifying and understanding the reasons
underlying it requires additional research and access
to other data sources. Addressing the first question,
we postulate that Canada’s COVID-19 quarantine
and distancing policies added in mid-March 2020
resulted in a measurable decrease in credit card
transactions. Measurements taken the following
year, in March 2021, reveal a relatively diminished
number of transactions due to the ongoing COVID
control measures. Still they are comparatively consis-
tent within the month (apart from a clear weekly
cycle), indicating a long-term change from the earlier
systemic shock.

Answering the second question—Can these changes
be identified automatically>—our analysis of Figure
3 required a significant level of human-directed
computation, visualization, and analysis to identify
the likely COVID-19 impacts, which is not feasible
for operational datasets at scale. Our approach to
automatically identifying inconsistencies is based on
learning causal models of normal behavior from the
Mastercard data and using these models to infer
inconsistencies. Specifically, we determined a set of
that provide
regarding normal transaction behavior. This consists

transaction features information

Figure 3. Authorization Counts for March 2020 and
2021 Compared
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Note: March 2020 transaction volume decreases significantly in the
second half due to COVID sanctions impacting economic activity,
while March 2021 transactions remain comparatively stable.

Source: Authors’ analysis [7]

of a combination of straightforward transaction
information (e.g., the transaction amount and the
merchant category) and more complex features (e.g.,
the average historic transaction amount for this
merchant). Using causal structure learning algo-
rithms, we can then use these features to learn causal
models of transaction behavior.

Causal models in this setting consist of Bayesian
networks, where an edge from variable A to vari-
able B is interpreted as “A causes B” [10, 13]. The
network represents the joint probability distribu-
tion over the transactions in an interpretable way.
Such models are typically constructed in two main
steps—structure learning and parameter fitting—
with structure learning algorithms falling broadly
into score-based and constraint-based categories.
Score-based methods attempt to find the network
structure that optimizes a score function (such as the
Bayesian Information Criterion, or BIC). In contrast,
constraint-based methods perform a series of condi-
tional independence tests on the data, adjusting the
edges in the network to reflect the results of those
tests. Once a structure is learned, a conditional prob-
ability distribution is fitted at each node, denoting
the probability distribution of each variable condi-
tioned on the values of its direct causes—that is,
the variables that point to it—in the network. The
product of these conditional probability distributions
composes a joint distribution over the data.

Figure 4 provides an example of a causal structure
learned using Mastercard data from the first week
of March 2020. The network structure can provide
insight into the behavior of transactions, and the
probability distributions can be used to detect signifi-
cant system anomalies. For example, the edge “crypto
-> term attend” suggests that the probability distribu-
tion of a card terminal being human-attended differs
for crypto and non-crypto transactions, and the edge
“S. Amt -> B. Amt” suggests that the transaction
settlement amount affects the billing amount. Some
background information of temporal precedence was
provided to the algorithm in the form of logical rules
that cannot be violated as an edge blacklist (e.g., ‘mean
historic merchant transaction amount’ cannot occur
after ‘transaction amount’), and, when an undirected
edge (i.e., an arrow without a causal interpretation)
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Figure 4. Causal structure of transactions during the first half of March 20203
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Source: Authors’ analysis [7]

was returned by the structure learning algorithm, it
was modified by hand using knowledge about the

problem domain.

These models can be used to detect systemic shifts in
the transaction population by calculating the joint
probability of the features of any individual transac-
tion. By calculating this on a sample of transactions,
we get a distribution of transaction probabilities.
Assuming the transactions in the sample are drawn
from the same underlying distribution as the transac-
tions in the training data, we expect the distribution
of transaction probabilities to be static over time.
If the distribution starts to deviate, this suggests a
systemic change in how transactions function, which
may indicate a large-scale event. As an initial test of

this, we trained separate models on the first week
of March 2020 and the first week of March 2021.
We then sampled transactions from days throughout
March 2020 and 2021 and calculated their proba-
bilities according to their respective models. As we
can see in Figure 5, March 2020 sees a steep drop in
probability—as calculated by multiplying the condi-
tional probabilities of the observed values for each
variable given the observed values of its parents in the
network—that persists in the second half of March,
which is consistent with the large-scale changes

brought about by COVID lockdowns at that time.

Figure 6 shows a return to a more consistent trans-
action pattern in March 2021, like in the first half
of March 2020. Because these joint probabilities are
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Figure 5. Joint Probability of a Sample of Transac-
tions in March 2020
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Note: Joint probability of a sample of transactions based on a
model learned on data from March 6-12, 2020, which shows a clear
reduction in transaction volume after March 14.

Source: Authors’ analysis [7]

composed of conditional probabilities at each node,
we can further investigate which variables experi-
enced a probability drop, further helping guide the
investigation to identify potential causes of a systemic
change.

Figures 5 and 6 were created using transactions
from all MCCs during the training period. However,
models can be trained over any subset of the data,
providing more focused and tailored insights. For
example, a model could be trained on transactions
from only a single issuing bank, a particular industry
or economic sector, or a selected country or region
over a focused timeframe. As shown above, we can
learn a model of typical transaction behavior for that
use case and calculate the distribution of transaction
probabilities over time. A shift in these probabilities
would signify a change in behavior for that focused
subsystem, rather than the entire financial system.
We can apply such analysis to any subset of the data
for which we have sufficient transactions. While the
model’s causal structure alone can be informative, the
model also contains a set of conditional probabilities
that can be used to detect anomalies—automatically
identify system changes. Such models encode what
behavior is typical for payment transactions, and this

Figure 6. Joint Probability of a Sample of Transac-
tions in March 2021
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Note: Joint probability of a sample of transactions based on a mod-
el learned on data from March 6-12, 2021, which shows a compara-
tively consistent transaction pattern during this period.

Source: Authors’ analysis [7]

can be used to identify automatically when transac-
tions shift away from that behavior.

PROTECTING FINANCIAL
NETWORKS

Computational tools and processes provide vital
protection to financial networks and systems.
However, by themselves, they are insufficient as
personnel must be trained to know when and how
to use them through preparation, coordination, and
practice [11]. For example, Mastercard employs a
Safety Net system that automatically applies rule-
based models to detect transaction fraud [6]. Given
the importance of fraud detection to a credit card’s
business, this capability is fundamental to supporting
the integrity of the authorization process. Mastercard
empbhasizes fraud detection during the authorization
step to avoid the cost of unwinding cleared transac-
tions through the chargeback process, which can be
significant. Credit card companies therefore err on
the side of caution with the understanding that trans-
actions denied during authorization can always be
re-initiated. These types of checks can be expanded
using the types of causal models described in Section
3 to address other types of relationships revealed by
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consumer transactions including transnational fraud
[2]; cyber-attacks [3,5]; and money laundering as well
as other financial crimes [14].

While causal models can be applied to identify a
range of systemic threats and dynamics, several
challenges exist when considering applications to
transnational fraud. First, while the Mastercard
payments dataset spans multiple regulatory regimes
(210 countries and territories [8]) that allow for
transnational dynamics to be detected, the volume is
quite high — on the order of 60k transactions/sec — so
automatic detection models must be computation-
ally efficient. Prioritizing model application based on
risk—a function of problem frequency and impact—
is therefore required [3].

Second, the transaction environment can be count-
er-intuitive and hard to interpret, as what appears at
first glance to be problematic often is not, and what
seems normal can be problematic. This complicates
detection and causal identification, so care must be
given to the human interactions that support these
systems. New models will need to be added and
others removed, requiring a model testing process to
ensure that they perform effectively and as expected.

Third, the transaction payments system itself,
rooted in human behavior, is dynamic, changing
and evolving over time. Therefore, identifying and
addressing problems such as fraud doesn’t fully elimi-
nate them so much as cause the system to change and
evolve. This presents an opportunity to apply artificial
intelligence to create models that can learn, adapt,
and update to track the new “normal.” Additional
human analysis, processes, checks, and institutional
infrastructure will always be required to identify and
address newly emergent transaction problems, intro-
ducing additional delays, costs, and complexities into
automated detection systems. However, automatic
models provide an important capability to help iden-
tify financial network changes and threats.

CONCLUSION

In conclusion, a range of capabilities are available to
improve the resilience and performance of distrib-
uted financial networks. This study demonstrates

several features of a complete solution. First, trans-
actions among firms, like the credit card transactions
captured in the Mastercard data [7], produce complex
networks. Data backups at the firm level provide an
important resilience capability, but consideration
must also be given to the network structure and
the relationships among banks. We provide a set of
metrics to check the balances among banks and iden-
tify problems early and efficiently.

Second, we find Bayesian network models can auto-
matically recognize changes in the financial network.
Moreover, the causal relationships that comprise these
models can be queried to provide additional infor-
mation about how the system has changed. While
such models are used to explore fraud identification
in our setting, they can also be adapted and focused
to address various other system changes and threats.

Third these models can be used in an operational
system to address threats quickly when time is of
the essence. The detection and response to financial
network threats require ongoing diligence to ensure
personnel are trained to respond effectively when
threats are identified. Addressing them requires a
range of integrated tools and procedures tailored
to meet the needs of the financial firm, network,
and system as no single, “silver bullet” solution
exists. Instead, improving systems and protecting
networks requires multiple, integrated solutions that
reduce errors and address problems from different
perspectives.
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ENDNOTES

1 The data we worked with was anonymized
through a hashing process, in which bank and
Personally Identifiable Information (PII) are
transformed into arbitrary numerical values,
thereby ensuring privacy.

2 As Canada’s GDP is about one-tenth the size of
the US (1.8T PPP (2020) vs. 22T PPP (2019)
respectively), US transaction data is anticipated
to be an order of magnitude larger.

3 'The following variables are used to construct the
Figure 4 causal model: b amt — billing amountg;
s amt — settlement amount; m total txn — total
transaction amount for this merchant in the
training period (proxy for merchant size);
tXn status — transaction status or purpose
(e.g., normal request, account status inquiry,
preauthorized request); cleared — whether or
not the transaction cleared within a week; term
attend — is the terminal used for the transaction
human-attended?; term input — input method
for the terminal; entry md — terminal entry
mode (PIN entry capability); term loc — termi-
nal location (on or off premise, or no terminal
used); card cap — does the terminal used have
card capture capabilities?; holder present — is
the cardholder present for the transaction? (if
not, order method, such as phone or electron-
ic); card present — is the card present for the
transaction?; response — response code (approval
or decline with reason); CAT lvl — if relevant,
Cardholder Activated Terminal (CAT) security
level of transaction; [crypto, gambling, restau-
rants, airlines] — merchant category for this
transaction.
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