
JULY 30, 2024

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as

representing the official views or policies of the Department of Defense or the U.S. Government.

Improving the resilience of machine learning in
financial systems through synthetic data

The stability of a financial system requires the ability to recognize and recover
from catastrophic events quickly. To ensure the stability and reliability of data
backups and their connected systems, we must be able to determine whether the
data in these backups are consistent. This inference problem requires a model of
why acceptable differences exist to detect when inconsistencies arise. Synthetic
data that systematically generate acceptable and unacceptable inconsistencies
can improve the financial system’s resilience. This brief outlines an interpretable
procedure using Bayesian probabilistic models to generate synthetic data. This
approach allows one to develop machine learning tools to detect inconsistencies
in federated backups. We show how this synthetic data approach can reveal the
conditions under which a machine learning tool may fail and how we can exploit
that information to build a more robust tool for detecting potential operation
outages or cybersecurity threats.

By Baxter Eaves

INTRODUCTION
“Episodes of acute financial stress in 2008 and
2020 have exposed several major gaps and defi-
ciencies in the range and quality of data available
to financial regulators to identify emerging risks
in the financial system.”

FSOC 2021 annual report, section 5.5.5

The stability of financial systems requires the ability
to recognize and recover from catastrophic events—
operation outages, cyberattacks, etc.—quickly. Yet,
significant financial system elements are federated:
they do not have a unified representation of the
current state. For example, foreign exchange trades

24 hours a day worldwide; trades and transactions
are typically distributed geographically via brokers,
and due to the temporal aspect of finalizing trans-
actions and geographic constraints, data at different
locations are typically different. With federated
data, recognizing an adverse event cannot simply
be looking for disagreements, and recovery requires
inferring the most likely truth underlying the unaf-
fected data.

Cyberattack damage is estimated to exceed $10.5
trillion annually by 2025, with cyber security expen-
ditures increasing 12.4% per year1. The financial
sector is a popular target for attack; these attacks on
the financial sector scale, from small-scale jackpotting

July 30, 2024 | Page 2

attacks on ATMs, to far-reaching attacks such as
the 2020 attack on SolarWinds, which impacted
financial regulators. Machine learning (ML) systems
are increasingly assessing stability and resilience in
financial systems to detect events that could portend
failures to combat increasing threats. For example,
fraud and cyber threat detection are treated as classifi-
cation problems (is this payment activity anomalous?
is this access pattern malicious?); determining the
mutual consistency of federated data can be formal-
ized as a probabilistic inference about consistency (are
multiple datasets statistically identical)2. ML systems
deployed to monitor the consistency of various trans-
action streams may have been able to detect and
attribute unusual order flow (such as generating and
canceling large sell orders) like those that resulted in
the 2010 flash crash.

ML systems require training data. To learn to classify
outages, attacks, or other adverse events a detection
system must have access to many examples, and any
detection system is only as good as its training data.
Though ML systems are finding broader use in finan-
cial systems via cyber security and fraud analysis, the
performance characteristics, stability, and resilience
of these ML systems are poorly understood.

A key bottleneck in ensuring the performance of
ML systems is the availability of ample, high-quality
training data. By definition, catastrophic events are
rare. Because ML systems are optimized based on
available training data, rarity is a significant challenge
to ensuring the financial system’s stability. Human
experts can imagine other possibilities not yet present
in the data, but human experts’ time and knowledge
are costly and ultimately limited. Existing synthetic
data methods, such as deep neural networks, do not
support systematic manipulation of causal factors that
might give rise to inconsistencies or facilitate human
understanding of any failure, which is critical to
improving the system. The financial system’s stability
would be greatly improved by systematic methods for
synthetically generating plausible failures, affordably
and scalably, to understand limitations and improve
the performance of ML systems.

This brief describes a method for automatically
generating ample, high-quality synthetic data for

evaluating systemic events. We demonstrate the
usefulness of this approach by using synthetic data to
iteratively design, evaluate, and improve a machine
learning system designed to detect inconsistencies in
distributed backups of financial data. The approach
is extensible to any domain where machine learning
is trained on tabular data—the vast majority of
applications in the financial system—and therefore
represents a general approach to systematic evalua-
tion and improvement of the resilience of ML systems
deployed in finance.

PROBABILISTIC MODELS AND
SYNTHETIC DATA

Financial data typically follow a tabular format, with
rows and columns as one could represent in an Excel
spreadsheet. For example, stock market data is often
represented as a table in which the rows represent
a timestamp and columns represent the high, low,
open, and close prices for a fixed amount of time
at that timestamp. There are several approaches to
synthetic tabular data, the most popular being deep
learning architectures (e.g., the Conditional Tabular
Generative Adversarial Network (CTGAN)) and
bespoke probabilistic model-based approaches. Deep
learning is used in automated trading for text senti-
ment analysis, asset pricing, risk management, and
trade execution and is used to predict risk in under-
writing and lending3. Deep learning allows the user
to drop a dataset and generate a black box model to
generate synthetic data. The ease of use of the deep
learning approach comes at a cost: the deep learning
approach learns an arbitrary black box function that
cannot be understood by users and thus cannot be
manipulated in meaningful ways. While probabi-
listic approaches are generally interpretable and emit
tunable models, users must motivate, design, and
implement those models.

An ideal synthetic data approach allows for learning
intuitive and tunable probabilistic models from arbi-
trary data, such as Probabilistic Cross-Categorization
(PCC)4. PCC learns probability distributions over
tables of data by clustering statistically dependent
columns into views and, within each view, clustering
similar rows into categories (see Figure 1). Views
capture a generalized notion of correlation by finding

July 30, 2024 | Page 3

columns whose rows follow similar categorizations.
The categories within a view represent groups of rows
that follow a similar probability distribution.

Monitoring which columns in the PCC table occupy
the same views offers a fast way to assess the statis-
tical structure of the data: which things predict or
depend on which other things. Monitoring which
rows within those views occupy the same categories
provides a way to determine activity similarity at
different time points.

To help us better understand, let us construct a hypo-
thetical and unrealistically simple Foreign Exchange
(Forex; FX) dataset. Our dataset contains a few
years of minute-level price data (USD at close) for
three currencies: the British Pound (GBP), the Euro
(EUR), and the Russian Ruble (RUB). Each row in
our PCC table represents the price of these curren-
cies at a given timestamp. In this example (see Figure
1), PCC would cluster features describing correlated
currencies into the same view; the Pound and the

Euro would likely be in the same view, and likely
not in the same view as the Ruble. Categories within
these views may describe trading periods with similar
behavior (e.g., various common trends), such as wild
volatility around a central bank announcement. Our
view containing the Ruble may have categories for
the flat activity leading up to Russia’s war against
Ukraine, the sharp drop in the following weeks, the
recovery between March and June 2022, and the
high volatility period following.

PCC has features that make it more general than deep
learning approaches. First, whereas deep learning
requires all features (columns) to be continuous (or
transformed into continuous data), PCC features
can be modeled explicitly as continuous, categorical,
or any type that a probabilistic model can explain.
Second, whereas deep learning requires all entries in
the data table to be occupied, PCC embraces missing
data and can even explicitly model missing-not-at-
random data, which is vital when the absence of data
is informative about other quantities.

PCC creates a joint probability distribution of our
dataset from which we can derive conditional distri-
butions. For example, we can ask about the likelihood
of an entire record (row in the data table) or we can
ask about the likelihood of specific columns of a
record given the values (observed or hypothetical) of
other columns. Continuing with our Forex example,
we can ask how likely the activity at a particular tick
is across all currencies, or we may ask how likely the
spread in the Singapore dollar is given the current
spread of the Hong Kong Dollar and the British
Pound. We ask the system to simulate these inferred
distributions to generate synthetic data.

Standard synthetic data methods generate all data
simultaneously from the learned data model. This
all-or-nothing generation does not allow straightfor-
ward data manipulation for testing purposes. On the
other hand, PCC gives us access to conditional distri-
butions, allowing us to generate data given certain
constraints imposed by other features. For example,
we may wish to simulate the Euro given that the
Pound is trading above a certain range or simulate
S&P500 activity given the VIX has shown a sharp

Notes: Hypothetical Forex example demonstrating a three-column
PCC structure with two views. The leftmost view captures the Brit-
ish Pound (GBP) and the Euro (EUR) columns, which are correlated
currencies, while the right view contains the uncorrelated Russian
Ruble (RUB). Within the GBP-EUR view, PCC has captured several
categories of activity, denoted by colored blocks. Within the RUB
view, the categories represent different classes of activity over
different time points.

Source: Author’s creation.

Figure 1. An example of structure learned under
probabilistic cross-categorization

July 30, 2024 | Page 4

increase over the past five trading days. Conditional
distributions are the primary mechanism by which
we manipulate the synthetic data. By manipulating
the conditions provided to the simulator along inter-
pretable dimensions and evaluating machine learning
performance on the resultant simulated data, we
can determine under what conditions the machine
learning system fails and succeeds and use that infor-
mation to build more robust systems.

In the following sections, we will work through an
in-depth example of how synthetic data may be used
to identify failure modes and improve ML systems
by designing, testing, and improving an ML system
for detecting inconsistencies in distributed financial
data systems.

INCONSISTENCY DETECTION

Now that we have described a framework for gener-
ating and manipulating synthetic data let us walk
through an example of how we might apply synthetic
data to improve an ML tool designed to maintain
stability and resilience in a financial market. For
example, we will develop an approach to detect
inconsistencies in federated financial data backups
and improve it via synthetic data.

We would like to maintain a backup of financial
data, but storing all the data in one place makes our
backup vulnerable to attack or failure. We can store
the data on multiple distributed or federated backups
to add robustness5. The issue is that the financial
system moves so fast and geographically distributed
that none of these backups will ever contain the same
data. How, then, do we determine whether the data
on these backups are consistent, that the data on all
backups reflect the same state of affairs, or that one
or more backups have experienced an error, failure,
or attack?

Determining whether backups are consistent is
determining whether the same causal model gener-
ated their data. If the same process generates the data
stored in each backup, it stands to reason that prob-
abilistic models trained on each backup should be
similar. Similar models attribute similar likelihood
to identical data, which means that models trained

on consistent backups should attribute similar likeli-
hood to any datum.

To assess consistency, we may train a probabilistic
model, M, on each backup or dataset and directly
evaluate the similarity between models using a
standard mathematical measure of divergence, for
example, Kullback–Leibler (KL) divergence or the
more general Jensen-Shannon (JS) divergence. KL
divergence can be interpreted as the expected differ-
ence in surprisal when interpreting data generated by
a model M1 under a different model M2. Given a set
of models, JS divergence is the average KL divergence
between each model and the average (mixture) of the
models.

KL and JS divergence are intractable to estimate
for complex classes of models, but one may extract
similar information by comparing the likelihoods of
data under multiple models. If two models, M1 and
M2 are identical, they will attribute the same like-
lihood to identical data, i.e., p(x|M_1) = p(x|M_2)
for all data x. We would not expect models trained
on different consistent data sources to be completely
identical due to noise in the data-generating process
and noise in the model-fitting process. Still, they
should be similar and thus produce similar likeli-
hoods on an evaluation dataset.

The combined set of data across datasets can be used
as the evaluation dataset. For example, computing the
likelihoods of the evaluation data under two models
yields a scatter plot (Figure 2, left) where identical
likelihoods lie on a straight diagonal line; points
farther from the diagonal have higher error. Or,
rather than producing a scatter plot, we can create a
set of univariate distributions over the likelihoods for
each model. We can then compare these likelihoods
using standard statistical tests (e.g., Kolmogorov–
Smirnov; Figure 2 , right).

This framework reduces multiple datasets to a single
consistency metric, which we will call the Offline
Multiple Model (OMM) approach. Practically
speaking, OMM fits a model on each backup at
each evaluation. This algorithm’s glaring limita-
tion is that model fitting happens offline in batches
while actual data arrive more or less continuously.

July 30, 2024 | Page 5

Moreover, models require access to batches large
enough to enable reliable statistical testing. Delays in
evaluating inconsistency lead to delays in detecting
and handling inconsistencies, during which time the
backups may be unreliable, or some component of
financial systems is behaving improperly.

To rectify this, let us propose a streaming algorithm
based on the observation that identical data will have

identical surprisal under a single model. Surprisal,
sometimes referred to as self-information or informa-
tion content, is a quantity from information theory
that describes the level of surprise in a particular
observation. It is defined as the negative log-like-
lihood of an observation -log p(x). High surprisal
indicates low likelihood. Surprisal does not have a
standard scaling across all models, so it must be eval-
uated relative to a set of surprisal values. For example,

Notes: Inconsistency in practice. Left) Scatter plots show the relationship between the surprisal (negative log-likelihood) of data within a
dataset under two models when the models are trained on consistent data (blue) and inconsistent data (orange). Note that in the inconsis-
tent case, one model emits more high-surprisal values than the other, meaning it finds much of the data unlikely, hence inconsistent. Right)
P-P plots show the error between models trained on consistent data (blue) and inconsistent data (red). We see that the inconsistent data
deviated strongly from the main diagonal, a signal that can be used to identify inconsistency in practice.

Source: Author’s creation.

Figure 2. Inconsistency as the difference between likelihood distributions

Notes: Streaming inconsistency detection frameworks. Left) Streaming Single Model (SSM) approach. Each data source (backup; square)
flows into a single, pre-trained model (black circle). The model outputs a stream of surprisals (triangles) attached to each data source, pass-
ing a changepoint detector (black diamond). Right) The Streaming Multi-Model approach (SMM). Multiple adapting models (circles) receive
data from each data source but only adapt to data from their source.

Source: Author’s creation.

Figure 3. Two inconsistency detection architectures

July 30, 2024 | Page 6

we may consider a surprisal value in the 99th percen-
tile anomalous.

Applying this to the inconsistency detector, if x = y,
-log p(x|M) = -log p(y|M) for all x, y, and importantly
all models, M, that support the data. Thus, the distri-
butions of surprisals should be the same as long as the
data are consistent and come from the same generative
model. Now, we can train one PCC model on a set of
known-consistent data, compute the surprisal of data
as they come in, and monitor the stream of surprisals
for changepoints using a changepoint detection algo-
rithm like Bayesian Online Changepoint Detection.
This method is called the Streaming Single Model
(SSM; Figure 3, left) approach. SSM facilitates near
real-time detection of inconsistencies, but what does
one lose by limiting the perspective of our approach
to a single model?

EVALUATING AN INCONSISTENCY
DETECTOR USING SYNTHETIC DATA

To evaluate an inconsistency detector, one could
attempt to hunt down real-world datasets exhib-
iting certain inconsistencies or develop a simulator
and manually program in certain failure modes.
Certainly, creating story-like scenarios helps facil-
itate a better understanding, but neither of these

approaches is fast or easy, and neither tests our tool
against unknown unknowns. To overcome this
limitation, one may alternatively deploy a procedure
that automatically generates many statistical incon-
sistencies. After evaluation, one can use the data from
the generator to determine under what statistical
conditions the inconsistency detector fails. Here, we
evaluate the SSM inconsistency detection approach
defined above using synthetic Forex data.

DATASET
Synthetic data generation requires a seed dataset.
Following the previous Forex example, we choose
minute-level Forex data (open, high, low, close)
encompassing 29 major currencies for a total of 116
columns.

PCC is first trained on real data to generage the initial
synthetic database. Once PCC has built a model of
the data, the input data are dropped, and random
synthetic data (which have the same distributional
properties as the original data) are generated from
the learned model. New ML systems are trained
and evaluated only on the synthetic data. All data
explored here are simulated.

AUTOMATICALLY GENERATING AND
MANIPULATING SYNTHETIC DATA

Notes: Synthetic data manipulation procedure. Left) Initial, consistent synthetic data. The troughs are found in the seed column likelihood
(black), dividing the seed column into segments (red lines). Right) Synthetic data (gray histogram) in which the mass of an interior segment is
reduced.

Source: Machine learning system outputs. Author’s creation.

Figure 4. Manipulating synthetic data by selectively removing probability mass

July 30, 2024 | Page 7

To automate synthetic data generation, we can deploy
a simple method for tunably generating discrepant
datasets. To do so, we first select a seed feature, xs,
and then find all the troughs in the distribution p(xs).
Troughs separate modes in the distribution; modes
correspond to different activity categories or latent
causal factors (e.g., in price activity, a mode may
be defined by the space between key support and
resistance). We then segment the distribution by the
troughs. For example, in a bi-modal distribution with
one trough, there will be two segments containing the
left and right tails of the distribution; for a tri-modal
distribution, there would be a leftmost edge segment,
an interior segment and a rightmost edge segment.
To generate the discrepant column, 𝑥𝑥𝑥𝑥�𝑠𝑠𝑠𝑠

, we remove
mass from the segments.

For example, we may remove 0-100% of the mass
from any segment (see Figure 4). We then simulate
the remaining features conditioned on the discrepant
feature distribution. This procedure gives us several
statistical dimensions to manipulate that affect the
synthetic data: the size, in probability mass, of the
segment being manipulated; the proportion of that
mass removed; whether the mass is from an edge or
an interior segment; and the statistical importance
of the seed column. The total amount of probability
mass manipulated affects the frequency of manipu-
lated data present in the discrepant dataset. Whether
the manipulated segment is in the interior or lies
on an edge determines the magnitude of surprisal:
edge points are extreme values, which generally have
higher surprisal (recall that higher surprisal indi-
cates lower likelihood). The statistical importance of
the seed column affects the magnitude of the effect
manipulating the seed column has on the other
columns. Manipulating a seed column that is statis-
tically independent all other columns will affect only
the synthetic data.

DIAGNOSIS
Running these experiments on synthetically gener-
ated data across all columns and segments revealed
a weakness of the SSM approach. SSM has difficulty
detecting inconsistencies derived from non-edge
(internal) segments. As an example of an edge-af-
fecting inconsistency, imagine an attack causing a
particular asset’s price volatility (variance) to increase

at one broker. Increasing variance causes extreme
values on both ends of the distribution, which causes
higher surprisal (because extreme values are more
surprising at baseline) and is easily detectable (see
Figure 5). As an example of an internal-affecting
inconsistency, imagine an attack that decreases vola-
tility. The surprisals are now more likely to fall within
the nominal range because the underlying data tends
to be more nominal. Detecting that observations have
become more extreme is far easier than detecting that
they are unusually expected.

IMPROVING THE INCONSISTENCY
DETECTOR WITH SYNTHETIC DATA

The synthetic data procedure described reveals fail-
ures in the SSM detection tool and has revealed
under what conditions failures occur. We can now
exploit this information to improve the inconsistency
detector. Pulling from our volatility attack example,
we would like to detect when the currency pair rela-
tionships are less volatile or more stable than usual.
However, we are limited by the single perspective of
the single-model approach described above. Figure
6, top, shows how the SSM approach fails to detect
variance decreases. When evaluated on all data

Notes: Surprisal streams from multiple consistent simulated data
sources. An attack on the orange source occurs at step 100 (vertical
line), which increases asset price volatility, which manifests as a
noticeable increase in surprisal.

Source: Author’s creation.

Figure 5. An attack that causes inconsistency causes
surprisal streams to diverge

July 30, 2024 | Page 8

sources, a model trained on the narrower data would
attribute higher surprisal to the normal data, making
the attack stand out.

One may achieve OMM’s ability to detect model
constriction in a streaming environment by using
multiple models that update online. This new incon-
sistency detector will maintain a model trained on
each data source, which will evaluate the surprisal
of the data from multiple data sources (see Figure 3,
left). This allows the surprisal of each data source to
be evaluated from the perspective of each other data
source.

Running the same experiments on this updated
inconsistency detector indicates that the vulnerability

has been closed: the online multiple-model approach
can detect an inconsistent decrease in volatility.
Figure 6 (bottom) shows that after the attack occurs,
the model attached to that attacked data stream
starts attributing higher surprisal to the consistent
data in the stream. This approach results in a detector
that identifies inconsistencies defined by unusually
normal data by creating a model that is unexpectedly
surprised by consistent data.

CONCLUSION

Training and validation are the core of developing
machine learning tools, thus, machine learning tools
are limited by the data they are trained and vali-
dated on. The financial system must be robust to
unexpected and potentially catastrophic events, but
unexpected events are rare, making real-world data
hard to come by. People may be employed to create
simulations of these events, but people are limited by
time and imagination.

In this work, we explored an intuitive and gener-
al-purpose method using probabilistic modeling for
generating synthetic data that can be manipulated
along interpretable statistical dimensions. Using
backup inconsistency detection as a testbed, we
showed how validation led by such a synthetic data
approach can help practitioners iteratively improve
machine learning tools while simultaneously vali-
dating or invalidating their intuitions about the
performance of their tools. The validation frame-
work revealed flaws in the detector; it had difficulty
detecting inconsistencies resulting in too much
well-behaved data. This information revealed an
opportunity to build a more robust inconsistency
detector by combining multiple approaches. The
resulting detector was greater than the sum of its
parts: closing failure modes found in the speedier
approach without sacrificing reaction time.

Financial systems are similar to other domains in
that latent causal structure gives rise to observable
data. Ensuring that financial systems are robust is
a problem of identifying and simulating probable
causes of instability, a natural application of the
probabilistic approach we highlight.

Notes: Performance of the streaming single model approach on
simulated data (a) and the streaming multi-model approach (b) in
detecting an inconsistency characterized by lower volatility in an
asset price that occurs on step 200 (black line). On the top, we see
that the single model approach stream does not appear to change
after the inconsistency is introduced, but on the bottom, we see
that the M0 stream (blue), which is stream of model connected to
the attacked data source changes as the model adapts to a narrow
range of values

Source: Author’s creation.

Figure 6. A multi-model approach facilitates detect-
ing inconsistencies that decrease volatility

July 30, 2024 | Page 9

ENDNOTES
1 McKinsey https://www.mckinsey.com/

capabilities/risk-and-resilience/our-insights/
cybersecurity/new-survey-reveals-2-trillion-dol-
lar-market-opportunity-for-cybersecurity-tech-
nology-and-service-providers

2 Fraud detection encompasses detecting
transaction fraud, identity theft, fake account
generation, and other security risks such as
phishing emails. Automated fraud detection
has become so ubiquitous that cloud compute
providers such as Amazon Web Services provide
fraud detection examples as use cases for their
hosted machine learning services. See https://
aws.amazon.com/solutions/implementations/
fraud-detection-using-machine-learning/.

3 For technical examples see https://arxiv.
org/abs/1602.06561 and https://arxiv.org/
abs/1810.03466

4 PCC learns a model of data by balancing the
goals of fitting the data well and explaining the
data simply with a model with few terms. This,
along with PCC’s ability to model missing data,
and a variety of data types natively (instead of
converting to and from real-valued vectors) give
PCC a significant edge over existing methods in
performance and usability.

5 All major cloud services offer distributed back-
ups. Enabling distributed backups is often as
simple as clicking a checkbox.

https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/new-survey-reveals-2-trillion-dollar-market-opportunity-for-cybersecurity-technology-and-service-providers

	INTRODUCTION
	PROBABILISTIC MODELS AND SYNTHETIC DATA
	INCONSISTENCY DETECTION
	EVALUATING AN INCONSISTENCY DETECTOR USING SYNTHETIC DATA
	DATASET
	AUTOMATICALLY GENERATING AND MANIPULATING SYNTHETIC DATA
	DIAGNOSIS

	IMPROVING THE INCONSISTENCY DETECTOR WITH SYNTHETIC DATA
	CONCLUSION

