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Improving the resilience of machine learning in 
financial systems through synthetic data

The stability of a financial system requires the ability to recognize and recover 
from catastrophic events quickly. To ensure the stability and reliability of data 
backups and their connected systems, we must be able to determine whether the 
data in these backups are consistent. This inference problem requires a model of 
why acceptable differences exist to detect when inconsistencies arise. Synthetic 
data that systematically generate acceptable and unacceptable inconsistencies 
can improve the financial system’s resilience. This brief outlines an interpretable 
procedure using Bayesian probabilistic models to generate synthetic data. This 
approach allows one to develop machine learning tools to detect inconsistencies 
in federated backups. We show how this synthetic data approach can reveal the 
conditions under which a machine learning tool may fail and how we can exploit 
that information to build a more robust tool for detecting potential operation 
outages or cybersecurity threats.

By Baxter Eaves

INTRODUCTION
“Episodes of acute financial stress in 2008 and 
2020 have exposed several major gaps and defi-
ciencies in the range and quality of data available 
to financial regulators to identify emerging risks 
in the financial system.”

FSOC 2021 annual report, section 5.5.5

The stability of financial systems requires the ability 
to recognize and recover from catastrophic events—
operation outages, cyberattacks, etc.—quickly. Yet, 
significant financial system elements are federated: 
they do not have a unified representation of the 
current state. For example, foreign exchange trades 

24 hours a day worldwide; trades and transactions 
are typically distributed geographically via brokers, 
and due to the temporal aspect of finalizing trans-
actions and geographic constraints, data at different 
locations are typically different. With federated 
data, recognizing an adverse event cannot simply 
be looking for disagreements, and recovery requires 
inferring the most likely truth underlying the unaf-
fected data.

Cyberattack damage is estimated to exceed $10.5 
trillion annually by 2025, with cyber security expen-
ditures increasing 12.4% per year1. The financial 
sector is a popular target for attack; these attacks on 
the financial sector scale, from small-scale jackpotting 
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attacks on ATMs, to far-reaching attacks such as 
the 2020 attack on SolarWinds, which impacted 
financial regulators. Machine learning (ML) systems 
are increasingly assessing stability and resilience in 
financial systems to detect events that could portend 
failures to combat increasing threats. For example, 
fraud and cyber threat detection are treated as classifi-
cation problems (is this payment activity anomalous? 
is this access pattern malicious?); determining the 
mutual consistency of federated data can be formal-
ized as a probabilistic inference about consistency (are 
multiple datasets statistically identical)2. ML systems 
deployed to monitor the consistency of various trans-
action streams may have been able to detect and 
attribute unusual order flow (such as generating and 
canceling large sell orders) like those that resulted in 
the 2010 flash crash.

ML systems require training data. To learn to classify 
outages, attacks, or other adverse events a detection 
system must have access to many examples, and any 
detection system is only as good as its training data. 
Though ML systems are finding broader use in finan-
cial systems via cyber security and fraud analysis, the 
performance characteristics, stability, and resilience 
of these ML systems are poorly understood.

A key bottleneck in ensuring the performance of 
ML systems is the availability of ample, high-quality 
training data. By definition, catastrophic events are 
rare. Because ML systems are optimized based on 
available training data, rarity is a significant challenge 
to ensuring the financial system’s stability. Human 
experts can imagine other possibilities not yet present 
in the data, but human experts’ time and knowledge 
are costly and ultimately limited. Existing synthetic 
data methods, such as deep neural networks, do not 
support systematic manipulation of causal factors that 
might give rise to inconsistencies or facilitate human 
understanding of any failure, which is critical to 
improving the system. The financial system’s stability 
would be greatly improved by systematic methods for 
synthetically generating plausible failures, affordably 
and scalably, to understand limitations and improve 
the performance of ML systems.

This brief describes a method for automatically 
generating ample, high-quality synthetic data for 

evaluating systemic events. We demonstrate the 
usefulness of this approach by using synthetic data to 
iteratively design, evaluate, and improve a machine 
learning system designed to detect inconsistencies in 
distributed backups of financial data. The approach 
is extensible to any domain where machine learning 
is trained on tabular data—the vast majority of 
applications in the financial system—and therefore 
represents a general approach to systematic evalua-
tion and improvement of the resilience of ML systems 
deployed in finance.

PROBABILISTIC MODELS AND 
SYNTHETIC DATA

Financial data typically follow a tabular format, with 
rows and columns as one could represent in an Excel 
spreadsheet. For example, stock market data is often 
represented as a table in which the rows represent 
a timestamp and columns represent the high, low, 
open, and close prices for a fixed amount of time 
at that timestamp. There are several approaches to 
synthetic tabular data, the most popular being deep 
learning architectures (e.g., the Conditional Tabular 
Generative Adversarial Network (CTGAN)) and 
bespoke probabilistic model-based approaches. Deep 
learning is used in automated trading for text senti-
ment analysis, asset pricing, risk management, and 
trade execution and is used to predict risk in under-
writing and lending3. Deep learning allows the user 
to drop a dataset and generate a black box model to 
generate synthetic data. The ease of use of the deep 
learning approach comes at a cost: the deep learning 
approach learns an arbitrary black box function that 
cannot be understood by users and thus cannot be 
manipulated in meaningful ways. While probabi-
listic approaches are generally interpretable and emit 
tunable models, users must motivate, design, and 
implement those models. 

An ideal synthetic data approach allows for learning 
intuitive and tunable probabilistic models from arbi-
trary data, such as Probabilistic Cross-Categorization 
(PCC)4. PCC learns probability distributions over 
tables of data by clustering statistically dependent 
columns into views and, within each view, clustering 
similar rows into categories (see Figure 1). Views 
capture a generalized notion of correlation by finding 
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columns whose rows follow similar categorizations. 
The categories within a view represent groups of rows 
that follow a similar probability distribution.

Monitoring which columns in the PCC table occupy 
the same views offers a fast way to assess the statis-
tical structure of the data: which things predict or 
depend on which other things. Monitoring which 
rows within those views occupy the same categories 
provides a way to determine activity similarity at 
different time points.

To help us better understand, let us construct a hypo-
thetical and unrealistically simple Foreign Exchange 
(Forex; FX) dataset. Our dataset contains a few 
years of minute-level price data (USD at close) for 
three currencies: the British Pound (GBP), the Euro 
(EUR), and the Russian Ruble (RUB). Each row in 
our PCC table represents the price of these curren-
cies at a given timestamp. In this example (see Figure 
1), PCC would cluster features describing correlated 
currencies into the same view; the Pound and the 

Euro would likely be in the same view, and likely 
not in the same view as the Ruble. Categories within 
these views may describe trading periods with similar 
behavior (e.g., various common trends), such as wild 
volatility around a central bank announcement. Our 
view containing the Ruble may have categories for 
the flat activity leading up to Russia’s war against 
Ukraine, the sharp drop in the following weeks, the 
recovery between March and June 2022, and the 
high volatility period following.

PCC has features that make it more general than deep 
learning approaches. First, whereas deep learning 
requires all features (columns) to be continuous (or 
transformed into continuous data), PCC features 
can be modeled explicitly as continuous, categorical, 
or any type that a probabilistic model can explain. 
Second, whereas deep learning requires all entries in 
the data table to be occupied, PCC embraces missing 
data and can even explicitly model missing-not-at-
random data, which is vital when the absence of data 
is informative about other quantities.

PCC creates a joint probability distribution of our 
dataset from which we can derive conditional distri-
butions. For example, we can ask about the likelihood 
of an entire record (row in the data table) or we can 
ask about the likelihood of specific columns of a 
record given the values (observed or hypothetical) of 
other columns. Continuing with our Forex example, 
we can ask how likely the activity at a particular tick 
is across all currencies, or we may ask how likely the 
spread in the Singapore dollar is given the current 
spread of the Hong Kong Dollar and the British 
Pound. We ask the system to simulate these inferred 
distributions to generate synthetic data.

Standard synthetic data methods generate all data 
simultaneously from the learned data model. This 
all-or-nothing generation does not allow straightfor-
ward data manipulation for testing purposes. On the 
other hand, PCC gives us access to conditional distri-
butions, allowing us to generate data given certain 
constraints imposed by other features. For example, 
we may wish to simulate the Euro given that the 
Pound is trading above a certain range or simulate 
S&P500 activity given the VIX has shown a sharp 

Notes: Hypothetical Forex example demonstrating a three-column 
PCC structure with two views. The leftmost view captures the Brit-
ish Pound (GBP) and the Euro (EUR) columns, which are correlated 
currencies, while the right view contains the uncorrelated Russian 
Ruble (RUB). Within the GBP-EUR view, PCC has captured several 
categories of activity, denoted by colored blocks. Within the RUB 
view, the categories represent different classes of activity over 
different time points.

Source: Author’s creation.

Figure 1.  An example of structure learned under 
probabilistic cross-categorization
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increase over the past five trading days. Conditional 
distributions are the primary mechanism by which 
we manipulate the synthetic data. By manipulating 
the conditions provided to the simulator along inter-
pretable dimensions and evaluating machine learning 
performance on the resultant simulated data, we 
can determine under what conditions the machine 
learning system fails and succeeds and use that infor-
mation to build more robust systems.

In the following sections, we will work through an 
in-depth example of how synthetic data may be used 
to identify failure modes and improve ML systems 
by designing, testing, and improving an ML system 
for detecting inconsistencies in distributed financial 
data systems.

INCONSISTENCY DETECTION

Now that we have described a framework for gener-
ating and manipulating synthetic data let us walk 
through an example of how we might apply synthetic 
data to improve an ML tool designed to maintain 
stability and resilience in a financial market. For 
example, we will develop an approach to detect 
inconsistencies in federated financial data backups 
and improve it via synthetic data.

We would like to maintain a backup of financial 
data, but storing all the data in one place makes our 
backup vulnerable to attack or failure. We can store 
the data on multiple distributed or federated backups 
to add robustness5. The issue is that the financial 
system moves so fast and geographically distributed 
that none of these backups will ever contain the same 
data. How, then, do we determine whether the data 
on these backups are consistent, that the data on all 
backups reflect the same state of affairs, or that one 
or more backups have experienced an error, failure, 
or attack?

Determining whether backups are consistent is 
determining whether the same causal model gener-
ated their data. If the same process generates the data 
stored in each backup, it stands to reason that prob-
abilistic models trained on each backup should be 
similar. Similar models attribute similar likelihood 
to identical data, which means that models trained 

on consistent backups should attribute similar likeli-
hood to any datum.

To assess consistency, we may train a probabilistic 
model, M, on each backup or dataset and directly 
evaluate the similarity between models using a 
standard mathematical measure of divergence, for 
example, Kullback–Leibler (KL) divergence or the 
more general Jensen-Shannon (JS) divergence. KL 
divergence can be interpreted as the expected differ-
ence in surprisal when interpreting data generated by 
a model M1 under a different model M2. Given a set 
of models, JS divergence is the average KL divergence 
between each model and the average (mixture) of the 
models.

KL and JS divergence are intractable to estimate 
for complex classes of models, but one may extract 
similar information by comparing the likelihoods of 
data under multiple models. If two models, M1 and 
M2 are identical, they will attribute the same like-
lihood to identical data, i.e.,  p(x|M_1) = p(x|M_2) 
for all data x. We would not expect models trained 
on different consistent data sources to be completely 
identical due to noise in the data-generating process 
and noise in the model-fitting process. Still, they 
should be similar and thus produce similar likeli-
hoods on an evaluation dataset.

The combined set of data across datasets can be used 
as the evaluation dataset. For example, computing the 
likelihoods of the evaluation data under two models 
yields a scatter plot (Figure 2, left) where identical 
likelihoods lie on a straight diagonal line; points 
farther from the diagonal have higher error. Or, 
rather than producing a scatter plot, we can create a 
set of univariate distributions over the likelihoods for 
each model. We can then compare these likelihoods 
using standard statistical tests (e.g., Kolmogorov–
Smirnov; Figure 2 , right).

This framework reduces multiple datasets to a single 
consistency metric, which we will call the Offline 
Multiple Model (OMM) approach. Practically 
speaking, OMM fits a model on each backup at 
each evaluation. This algorithm’s glaring limita-
tion is that model fitting happens offline in batches 
while actual data arrive more or less continuously. 
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Moreover, models require access to batches large 
enough to enable reliable statistical testing. Delays in 
evaluating inconsistency lead to delays in detecting 
and handling inconsistencies, during which time the 
backups may be unreliable, or some component of 
financial systems is behaving improperly.

To rectify this, let us propose a streaming algorithm 
based on the observation that identical data will have 

identical surprisal under a single model. Surprisal, 
sometimes referred to as self-information or informa-
tion content, is a quantity from information theory 
that describes the level of surprise in a particular 
observation. It is defined as the negative log-like-
lihood of an observation -log p(x). High surprisal 
indicates low likelihood. Surprisal does not have a 
standard scaling across all models, so it must be eval-
uated relative to a set of surprisal values. For example, 

Notes: Inconsistency in practice. Left) Scatter plots show the relationship between the surprisal (negative log-likelihood) of data within a 
dataset under two models when the models are trained on consistent data (blue) and inconsistent data (orange). Note that in the inconsis-
tent case, one model emits more high-surprisal values than the other, meaning it finds much of the data unlikely, hence inconsistent. Right) 
P-P plots show the error between models trained on consistent data (blue) and inconsistent data (red). We see that the inconsistent data 
deviated strongly from the main diagonal, a signal that can be used to identify inconsistency in practice.

Source: Author’s creation.

Figure 2.  Inconsistency as the difference between likelihood distributions

  

Notes: Streaming inconsistency detection frameworks. Left) Streaming Single Model (SSM) approach. Each data source (backup; square) 
flows into a single, pre-trained model (black circle). The model outputs a stream of surprisals (triangles) attached to each data source, pass-
ing a changepoint detector (black diamond). Right) The Streaming Multi-Model approach (SMM). Multiple adapting models (circles) receive 
data from each data source but only adapt to data from their source.

Source: Author’s creation.

Figure 3. Two inconsistency detection architectures
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we may consider a surprisal value in the 99th percen-
tile anomalous.

Applying this to the inconsistency detector,  if x = y, 
-log p(x|M) = -log p(y|M) for all x, y, and importantly 
all models, M, that support the data. Thus, the distri-
butions of surprisals should be the same as long as the 
data are consistent and come from the same generative 
model. Now, we can train one PCC model on a set of 
known-consistent data, compute the surprisal of data 
as they come in, and monitor the stream of surprisals 
for changepoints using a changepoint detection algo-
rithm like Bayesian Online Changepoint Detection. 
This method is called the Streaming Single Model 
(SSM; Figure 3, left) approach. SSM facilitates near 
real-time detection of inconsistencies, but what does 
one lose by limiting the perspective of our approach 
to a single model?

EVALUATING AN INCONSISTENCY 
DETECTOR USING SYNTHETIC DATA

To evaluate an inconsistency detector, one could 
attempt to hunt down real-world datasets exhib-
iting certain inconsistencies or develop a simulator 
and manually program in certain failure modes. 
Certainly, creating story-like scenarios helps facil-
itate a better understanding, but neither of these 

approaches is fast or easy, and neither tests our tool 
against unknown unknowns. To overcome this 
limitation, one may alternatively deploy a procedure 
that automatically generates many statistical incon-
sistencies. After evaluation, one can use the data from 
the generator to determine under what statistical 
conditions the inconsistency detector fails. Here, we 
evaluate the SSM inconsistency detection approach 
defined above using synthetic Forex data.

DATASET
Synthetic data generation requires a seed dataset. 
Following the previous Forex example, we choose 
minute-level Forex data (open, high, low, close) 
encompassing 29 major currencies for a total of 116 
columns.

PCC is first trained on real data to generage the initial 
synthetic database. Once PCC has built a model of 
the data, the input data are dropped, and random 
synthetic data (which have the same distributional 
properties as the original data) are generated from 
the learned model. New ML systems are trained 
and evaluated only on the synthetic data. All data 
explored here are simulated.

AUTOMATICALLY GENERATING AND 
MANIPULATING SYNTHETIC DATA

Notes: Synthetic data manipulation procedure. Left) Initial, consistent synthetic data. The troughs are found in the seed column likelihood 
(black), dividing the seed column into segments (red lines). Right) Synthetic data (gray histogram) in which the mass of an interior segment is 
reduced.

Source: Machine learning system outputs. Author’s creation.

Figure 4. Manipulating synthetic data by selectively removing probability mass
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To automate synthetic data generation, we can deploy 
a simple method for tunably generating discrepant 
datasets. To do so, we first select a seed feature, xs, 
and then find all the troughs in the distribution p(xs). 
Troughs separate modes in the distribution; modes 
correspond to different activity categories or latent 
causal factors (e.g., in price activity, a mode may 
be defined by the space between key support and 
resistance). We then segment the distribution by the 
troughs. For example, in a bi-modal distribution with 
one trough, there will be two segments containing the 
left and right tails of the distribution; for a tri-modal 
distribution, there would be a leftmost edge segment, 
an interior segment and a rightmost edge segment. 
To generate the discrepant column, 𝑥𝑥𝑥𝑥�𝑠𝑠𝑠𝑠 

 

, we remove 
mass from the segments.

For example, we may remove 0-100% of the mass 
from any segment (see Figure 4). We then simulate 
the remaining features conditioned on the discrepant 
feature distribution. This procedure gives us several 
statistical dimensions to manipulate that affect the 
synthetic data: the size, in probability mass, of the 
segment being manipulated; the proportion of that 
mass removed; whether the mass is from an edge or 
an interior segment; and the statistical importance 
of the seed column. The total amount of probability 
mass manipulated affects the frequency of manipu-
lated data present in the discrepant dataset. Whether 
the manipulated segment is in the interior or lies 
on an edge determines the magnitude of surprisal: 
edge points are extreme values, which generally have 
higher surprisal (recall that higher surprisal indi-
cates lower likelihood). The statistical importance of 
the seed column affects the magnitude of the effect 
manipulating the seed column has on the other 
columns. Manipulating a seed column that is statis-
tically independent all other columns will affect only 
the synthetic data.

DIAGNOSIS
Running these experiments on synthetically gener-
ated data across all columns and segments revealed 
a weakness of the SSM approach. SSM has difficulty 
detecting inconsistencies derived from non-edge 
(internal) segments. As an example of an edge-af-
fecting inconsistency, imagine an attack causing a 
particular asset’s price volatility (variance) to increase 

at one broker. Increasing variance causes extreme 
values on both ends of the distribution, which causes 
higher surprisal (because extreme values are more 
surprising at baseline) and is easily detectable (see 
Figure 5). As an example of an internal-affecting 
inconsistency, imagine an attack that decreases vola-
tility. The surprisals are now more likely to fall within 
the nominal range because the underlying data tends 
to be more nominal. Detecting that observations have 
become more extreme is far easier than detecting that 
they are unusually expected.

IMPROVING THE INCONSISTENCY 
DETECTOR WITH SYNTHETIC DATA

The synthetic data procedure described reveals fail-
ures in the SSM detection tool and has revealed 
under what conditions failures occur. We can now 
exploit this information to improve the inconsistency 
detector. Pulling from our volatility attack example, 
we would like to detect when the currency pair rela-
tionships are less volatile or more stable than usual. 
However, we are limited by the single perspective of 
the single-model approach described above. Figure 
6, top, shows how the SSM approach fails to detect 
variance decreases. When evaluated on all data 

Notes: Surprisal streams from multiple consistent simulated data 
sources. An attack on the orange source occurs at step 100 (vertical 
line), which increases asset price volatility, which manifests as a 
noticeable increase in surprisal.

Source: Author’s creation.

Figure 5.  An attack that causes inconsistency causes 
surprisal streams to diverge 
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sources, a model trained on the narrower data would 
attribute higher surprisal to the normal data, making 
the attack stand out.

One may achieve OMM’s ability to detect model 
constriction in a streaming environment by using 
multiple models that update online. This new incon-
sistency detector will maintain a model trained on 
each data source, which will evaluate the surprisal 
of the data from multiple data sources (see Figure 3, 
left). This allows the surprisal of each data source to 
be evaluated from the perspective of each other data 
source.

Running the same experiments on this updated 
inconsistency detector indicates that the vulnerability 

has been closed: the online multiple-model approach 
can detect an inconsistent decrease in volatility. 
Figure 6 (bottom) shows that after the attack occurs, 
the model attached to that attacked data stream 
starts attributing higher surprisal to the consistent 
data in the stream. This approach results in a detector 
that identifies inconsistencies defined by unusually 
normal data by creating a model that is unexpectedly 
surprised by consistent data.

CONCLUSION

Training and validation are the core of developing 
machine learning tools, thus, machine learning tools 
are limited by the data they are trained and vali-
dated on. The financial system must be robust to 
unexpected and potentially catastrophic events, but 
unexpected events are rare, making real-world data 
hard to come by. People may be employed to create 
simulations of these events, but people are limited by 
time and imagination. 

In this work, we explored an intuitive and gener-
al-purpose method using probabilistic modeling for 
generating synthetic data that can be manipulated 
along interpretable statistical dimensions. Using 
backup inconsistency detection as a testbed, we 
showed how validation led by such a synthetic data 
approach can help practitioners iteratively improve 
machine learning tools while simultaneously vali-
dating or invalidating their intuitions about the 
performance of their tools. The validation frame-
work revealed flaws in the detector; it had difficulty 
detecting inconsistencies resulting in too much 
well-behaved data. This information revealed an 
opportunity to build a more robust inconsistency 
detector by combining multiple approaches. The 
resulting detector was greater than the sum of its 
parts: closing failure modes found in the speedier 
approach without sacrificing reaction time.

Financial systems are similar to other domains in 
that latent causal structure gives rise to observable 
data. Ensuring that financial systems are robust is 
a problem of identifying and simulating probable 
causes of instability, a natural application of the 
probabilistic approach we highlight.

Notes: Performance of the streaming single model approach on 
simulated data (a) and the streaming multi-model approach (b) in 
detecting an inconsistency characterized by lower volatility in an 
asset price that occurs on step 200 (black line). On the top, we see 
that the single model approach stream does not appear to change 
after the inconsistency is introduced, but on the bottom, we see 
that the M0 stream (blue), which is stream of model connected to 
the attacked data source changes as the model adapts to a narrow 
range of values

Source: Author’s creation.

Figure 6.  A multi-model approach facilitates detect-
ing inconsistencies that decrease volatility
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ENDNOTES
1 McKinsey https://www.mckinsey.com/

capabilities/risk-and-resilience/our-insights/
cybersecurity/new-survey-reveals-2-trillion-dol-
lar-market-opportunity-for-cybersecurity-tech-
nology-and-service-providers

2 Fraud detection encompasses detecting 
transaction fraud, identity theft, fake account 
generation, and other security risks such as 
phishing emails. Automated fraud detection 
has become so ubiquitous that cloud compute 
providers such as Amazon Web Services provide 
fraud detection examples as use cases for their 
hosted machine learning services. See https://
aws.amazon.com/solutions/implementations/
fraud-detection-using-machine-learning/.

3 For technical examples see https://arxiv.
org/abs/1602.06561 and https://arxiv.org/
abs/1810.03466 

4 PCC learns a model of data by balancing the 
goals of fitting the data well and explaining the 
data simply with a model with few terms. This, 
along with PCC’s ability to model missing data, 
and a variety of data types natively (instead of 
converting to and from real-valued vectors) give 
PCC a significant edge over existing methods in 
performance and usability.

5 All major cloud services offer distributed back-
ups. Enabling distributed backups is often as 
simple as clicking a checkbox.
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